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Abstract—Network intrusion detection (NID) aims to identify
unusual network traffic patterns (distribution shifts) that require
NID systems to evolve continuously. While prior art empha-
sizes fully supervised annotated data-intensive continual learning
methods for NID, semi-supervised continual learning (SSCL)
methods require only limited annotated data. However, the inher-
ent class imbalance (CI) in network traffic can significantly im-
pact the performance of SSCL approaches. Previous approaches
to tackle CI issues require storing a subset of labeled training
samples from all past tasks in the memory for an extended dura-
tion, potentially raising privacy concerns. The proposed Semisu-
pervised Privacy-preserving Intrusion detection with Drift-aware
continual LEaRning (SPIDER) is a novel method that combines
gradient projection memory (GPM) with SSCL to handle CI
effectively without the requirement to store labeled samples
from all of the previous tasks. We assess SPIDER’s performance
against baselines on six intrusion detection benchmarks formed
over a short period and the Anoshift benchmark spanning ten
years, which includes natural distribution shifts. Additionally,
we validate our approach on standard continual learning image
classification benchmarks known for frequent distribution shifts
compared to NID benchmarks. SPIDER achieves comparable
performance to fully supervised and semisupervised baseline
methods, while requiring a maximum of 20% annotated data
and reducing the total training time by 2X.

Index Terms—network intrusion detection, continual learning,
gradient projection memory, class imbalance, distribution shift

I. INTRODUCTION

Distribution shift, also known as concept drift (CD) [1f], is a
natural phenomenon in many real-world problems, including cyberse-
curity [2]]. Often, the cause for such distribution shifts is the changes
in the hidden context of the concept class not known apriori [3]]. In
a nutshell, real-world data is not always independent and identically
distributed (i.i.d.), and concept drift happens gradually over time [4].
Specifically, we are interested in CD of network intrusion detection
data in this work. Network intrusion detection (NID) is a form of data
drift detection that represents anomalous (abnormal) patterns in the
network traffic [5]]. This abnormality may include unauthorized access
and penetrating activities on computing systems over the network [60].
CD arises in network traffic due to changes in the user/intruder
behavior pattern, software updates, etc [2]]. Consequently, our desider-
ata become building a network intrusion detection system (NIDS)
that evolves continuously to preserve old abnormal patterns while
adapting to new knowledge. These desiderata can be realized using
continual learning (CL) [7] for building NIDS. CL is defined as a
class of machine learning (ML) algorithms that mimic the human
way of learning as new tasks arrive, each with distribution shifts [/7}
8. Each task may represent a subset of training data containing a
distribution shift to be learned. A major performance bottleneck in
the CL framework is catastrophic forgetting (CF): an abrupt loss
in the performance of the previously learned task. Today, the CL
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framework solves various problems in domains like computer vision,
natural language processing, etc. However, its application to NID is
under-explored.

NID as a binary classification problem (BCP): NID is typically
trained on normal data using zero positive learning [9]], which makes
it immune to malicious behavior drift. However, its performance can
suffer when the distribution of normality shifts [10]. Here, normality
is the benign (majority) class traffic. Normality shifts can happen
with new patches, software updates, devices, or protocols [2 |[10].
So, we pose NID as a CL-based BCP to adapt to normality shifts
and identify known anomalies/attacks, which is particularly helpful
in differentiating out-of-distribution normal samples from known
intrusions. However, posing NID as a supervised BCP has two
main challenges: class imbalance (CI) and the requirement of the
large volume of annotated data. To reduce the amount of labeled
data required, we focus on the CL-based semi-supervised binary
classification problem in this work. In this context, CI refers to a
situation where each class in a task has a varying number of training
examples (n:). The majority class contains the highest number of
training examples, while the minority classes are the last few classes
when ranked based on n:.

Previous research [[11} [12]] on CL-based supervised binary NID
problem has shown the detrimental effects of class imbalance on
the CF of intrusion detection tasks and advocates the usage of
memory replay (MR) based algorithms to mitigate CF. However,
[11] requires access to large volumes of annotated data. Despite
the best efforts to automate the annotation process, it still requires
human intervention to prevent incorrect and missing annotations.
These annotation errors will make the learning system performance
biased/impacted [13]. Under such scenarios, semi-supervised training
methods could advance the learning with limited annotated data [14]
utilizing the abundant unlabeled data.

While memory-replay (MR) based techniques handle the adverse
effects of the CI on catastrophic forgetting, they require storing
a subset of training samples from all of the previous tasks for
an extended duration, which causes privacy preservation issues. In
NID, data privacy refers to storing a subset of labeled training
samples of all past tasks for a long time in memory, potentially
exposing the diversity of real-world traffic to adversarial attacks.
For instance, adversarial attacks like gradient revision [15] on the
buffer memory (of CL method) lead to an increase in forgetting
past task knowledge. However, incorporating adversarial training to
combat adversarial attacks into the memory-based CL methods may
lead to accelerated forgetting [16]] problem. Unlike images, crafting
an adversarial example on NID data with imperceptible changes is
difficult without the class label. Based on this intuition and motivated
by the previous attacks on buffer memory, our work stores only past
task samples without labels in the memory. Besides privacy concerns,
the MR approaches require a Memory Reorganization Policy (MRP)
to accommodate newly arriving training samples by replacing some
old samples in a fixed-size buffer memory. Previous work [17] has
shown the effectiveness of such an MRP on the detection performance



of the NIDS. So, careful attention is needed to choose an appropriate
policy.

TABLE I: Comparing the time taken by the memory reorga-
nization policy (MRP Time) with the total training time using
CBRS algorithm [18] on different NID benchmark datasets.
Reported timing values are in seconds measured using the wall
clock time.

Dataset MRP Time  Total Train Time  MRP Time Proportion
CICIDS-2017 [|19] 29 371 7.8%
KDDCUP’99 24 428 5.6%
UNSW-NBI15 [20] 19 502 3.7%
CSE-CICIDS-2018 [19] 75 1388 5.4%
AnoShift [2] 84 1448 5.8%

Further, MRP may induce additional computational complexity
for large-scale training, as illustrated in Table [I] for different NID
datasets with class balanced reservoir sampling (CBRS [18]]). CBRS
is a fully supervised algorithm that uses a finite-size buffer memory
to store a subset of all the past tasks and replaces the old samples
with newly arriving ones depending upon the class imbalance ratio.
The additional time required for MRP is nearly in the range of 4 to
8%, which may increase further with the size of the training dataset.

Motivated by data privacy and scaling issues of MRP, the proposed
method (SPIDER) uses gradient projection memory (GPM) [21] as a
substitute to represent all previous task exemplars and a finite buffer
that stores only the unlabeled training samples from the previous
task. GPM [21] contains the bases of the representations (neural
network activations) learned for each task. We will take gradient
update directions orthogonal to GPM at each training step to preserve
the previously learned knowledge. After finishing the training with
the task ’t,” we will replace the entire buffer memory with the subset
of randomly chosen unlabeled samples from the task °¢’, which does
not require any MRP.

In summary, our key contributions are as follows:

o To the best of our knowledge, this is the first work that studies
challenges when formulating the NID problem in the SSCL
setting. These challenges include adapting to concept drift,
training with limited annotated data, data privacy, and class
imbalance.

« We introduce a novel method dubbed Semisupervised Privacy-
preserving Intrusion detection with Drift-aware continual
IEaRning (SPIDER) that leverages gradient projection mem-
ory [21] in conjunction with finite buffer memory that uses only
unlabeled training samples from the previous task.

o We evaluate and compare the proposed method with five

baseline methods covering diverse families of different CL
methods using six standard network intrusion detection bench-
marks (KDDCUP’99, NSL-KDD, CICIDS-2017 [[19]], UNSW-
NB15 [20], CSE-CICIDS-2018 [19], and AnoShift [2]]) and
three standard CL image classification benchmarks (MNIST,
CIFAR-10 [22], and CIFAR-100 [22]]). We find that the SPI-
DER'’s performance on all these benchmarks is consistent and
is on par with that of the baselines, with a maximum of 20%
annotated data ensuring improved data privacy with reduced
training time.
The rest of this paper is structured as follows: Section [
presents the related work, while Section [l explains the relevant
mathematical foundations and notations used in the paper. In
Section [IV] we delve into the problem formulation, the end-to-
end training process, and the pseudo-code of the proposed SPI-
DER method. The experimental setup necessary for conducting
the experiments is detailed in Section [V] and then Section [VI|
discusses the performance results, computation complexity, and
hyperparameter sensitivity on the robustness of the SPIDER
through ablation study followed by the conclusion remarks.

II. RELATED WORK

Intrusion detection (ID): Network intrusion differs from normal
system behavior [Sf], so NID can be characterized by the distribution
drift in the network traffic [23]] as the malicious attacks are contin-
uously evolving [24f. This research aims to develop a NIDS that
can adapt to changes in the distribution of normal and attack traffic.
Network intrusions constitute only a small portion of overall network
traffic [25]]; consequently, an inherent class imbalance is present
in their representative datasets. Various sampling (and algorithmic)
approaches have been proposed in the literature, but this work does
not use them.

Continual learning (CL): Learning from a sequence of tasks to
mimic human learning is the hallmark of CL [7]. Aimed at mitigating
the CF, these methods are broadly categorized into regularization-
based methods [26], expansion-based methods, memory/rehearsal-
based approaches [27], and class imbalance-based methods [18].
The orthogonal projection (OP) based approach updates the model
parameters in the direction orthogonal to the past tasks gradients.
Specifically, the gradient projection memory (GPM) [21] method
stores the bases of representations of past tasks and updates the model
orthogonal to the bases. Unlike prior works, we use GPM [21]] and
buffer memory to handle class imbalance in this work.

Pseudo labeling in semi-supervised learning: Lee et al. [28]
introduced a pseudo-labeling approach based on the entrophy reg-
ularization to benefit from unlabeled data. The basis for such a
strategy relies on the cluster assumption or equivalently low-density
separation. The low-density separation between the classes minimizes
the class labels’ conditional entropy on the unlabeled data.

Semi-supervised continual learning (SSCL) methods generally
exploit the unlabeled data. In particular, ORDisCo [29]] uses con-
ditional GAN to generate samples for replay and avoids CF of
unlabeled data by stabilizing the parameters of the discriminator.
Distillmatch [30] is built on data augmentation, pseudo-labeling, and
consistency regularization. PICIL [31]] uses a model trained on a
previous task to generate pseudo-labels for newly arriving unlabeled
data and avoids CF using buffer memory. In stark contrast, our work
focuses on class imbalance and data privacy in the SSCL setting,
which the prior works ignored.

Continual learning in security: CL is applied to malware classi-
fication tasks in [32] and studied its suitability using 11 different CL
algorithms on two real-world malware traces. CL for phishing attack
detection is explored in [33]] on real-world benign and phishing traces
collected over three periods. Concerning our work, [[11]] has shown
that the memory-based class of CL approaches is more suitable for
NID tasks and suggests operating in domain incremental learning
settings (DILS) for better performance. Similarly, we conduct the
experiments in the DILS in this work, in which label space across
all tasks is fixed to benign(0) or attack(1), while data space may
change.

III. BACKGROUND

This section provides the mathematical foundation necessary to
understand the proposed method, SPIDER. It covers the singular
value decomposition algorithm, a preliminary method used in the
SPIDER, and various notations used in this work.

A. Preliminaries

Singular value decomposition (SVD) is also known as the matrix
factorization algorithm. Given a rectangular matrix A € R"*", it is
factorized into product of three matrices U € R™*™, V € R™*"
and ¥ € R™*™ which contain the sorted singular values along the
main diagonal. In a nutshell, A = UZVTJ Given the rank (r) of
the matrix, a k-rank approximation to the matrix A is given by

Ifor any given matrix A, A7 is the transpose operation on the matrix A.
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where k < r, u; € U,v; € V are the left and right singular vectors
and o; € diag(X) are singular values. The value of k can be the
smallest value that satisfies ||Ax||% > 6||A|[%, where [|.|[r is a
Frobenius norm of the matrix and ¢ is threshold hyperparameter (0 <
0 <1).

B. Notations

In this section, we present the notations and background required to
understand the problem formulation. Specifically, we outline a general
training strategy in the continual learning paradigm.

Without loss of generality, we assume that the entire training data
can be represented as a series of tasks to mimic human-like learning,
a common practice in CL literature [8} |18| 27|]. Each task is typically
a non-overlapping subset of training samples which assumes locally
task-level iid. Let D = {D"',D? ... D'} denote the full training
dataset, where D' = {D}, D!} represents the training exemplars
of the task ‘t’. Specifically, Dj, D, are the respective labeled and
unlabeled exemplars of the task ‘t*, where D = {zj.,y/. } /L, being
the feature vector and corresponding label of sample i and DY, =
{xfw }5, is a set of unlabeled samples (. > n;). The label space
of D} consists of two classes (o and y1), with our focus being on
binary classification. Assuming the general continual learning setting,
the solver function (predictor) fp (parameterized by ) will observe
the training data as an ordered sequence of tasks from D. Each task
t (> 1) consists of samples taken from the unlabeled data D, and
the corresponding labels are generated using a pseudo-label generator
function. Thus, the learning process for each task ‘¢’ consists of two
steps: 1) generate pseudo-label (3%) for the unlabeled data x?, taken
from DY, and 2) train the predictor fs with the data of task ‘¢’ (D,
and D) using the loss function £(-). The objective function over all
the tasks can be formulated as follows:

0" = arg min |Tl)| ; Lo(f8) @

where L£:(ff) = Li(f5(D")). The objective function defined
in Eqn(2) may not be adequate to handle catastrophic forgetting
(CF) due to distribution shifts. Various families of approaches were
proposed to handle CF. In this work, the focus is on memory-based
approaches in which a buffer memory M is used to store the samples
from all the previous tasks ({D;}_;). During training with task
‘t’, D} will be augmented with data sampled from M (represented
as D™). As a result, the objective function over all the tasks is
reformulated as follows:

. 1
6" = argmin ;75 > Li(fs) + Li(f5)
oy
where  Li(f5) = Li(f6,{Di UDL}), 3)
Ly(fs) = Li(f5,D™), and
D! = {D}uD,UD™}
IV. THE PROPOSED METHOD: SPIDER

In this section, we describe the problem formulation of the network
intrusion detection in the SSCL setting and details of the training
process of the proposed SPIDER method for each task.

A. Problem formulation

The objective function in Eqn(3) requires the following: 1) buffer
memory (M) to store a subset of all previous tasks training samples
to avoid catastrophic forgetting of the learned tasks and 2) label-
generating function to generate pseudo labels (D) for the unlabeled
data in each task. Whenever training on a longer sequence of tasks,

methods that rely on using M require storing all previous tasks’
training samples for longer periods, which may not be feasible when
users are concerned about data privacy. In stark contrast, we store
only unlabeled training samples (D;') from the previous task in
M to ensure privacy in the proposed method. Similar to [31]], the
model trained on previous task f;fl is used as a pseudo label
generating function in this work. So, fgilA will generate pseudo
labels for the unlabeled data in memory (DY), and in each task
(D%). However, storing unlabeled samples in M instead of labeled
samples may not effectively handle the detrimental effect of CI on
detection accuracy. This is because gradient updates Vo L¢(0) will
be influenced by the class imbalance ratio [34]. Thus, unlabeled
samples in M bring a newer challenge when privacy is considered
alone. This issue can be resolved based on our empirical finding that
projecting the current gradient update orthogonal to the directions
of the previous tasks’ gradients (VgL1(0), VoL2(0), ...) will reduce
the effect of CI. The intuition is that the stochastic gradient descent
(SGD) updates lie in the span of the input space, and taking the
direction orthogonal to such previous tasks’ gradient space will
introduce minimum interference from the previously learned tasks
and promotes positive backward transfer. Thus, the learning objective
becomes the following:

* . 1 - -
0 :argamanZ£t(f§, 5 1)+£;(f§a 5 1)
g

subject to VgL:(0) L span{VoL1(0), VoL2(0),...,VoLli—1(0)}
where D! = fi~1(D!),
Dy = f5 (DL,
Lt(fdi 571) = Lt(fga 5717 {Dlt U,ZA)'Z}%
Colfo fo~") = Lu(fa, f5~ D),
D! = {D}UDL UDI}
(C))
The span {VoL1(0),VoL2(0),...,VoLi—1(0)} represents the
space of the gradients. We will leverage the concept of gradient
projection memory to construct an efficient gradient span. The

procedure to construct the gradient space is explained in detail in
the following subsection.

B. Constructing the gradient span via GPM

Gradient projection memory (GPM) [21]] is built on the intuition
that the stochastic gradient descent (SGD) update lies in the input
space. When learning a new task, the gradient update step is or-
thogonal to the gradient subspace of the past tasks to minimize the
interference from the past tasks. Based on the prior intuition, to find
the gradient subspace of the past tasks, it is sufficient to find the input
subspace spanning all the past tasks. The bases of such a subspace are
constructed using learned representations of the past task using the
singular value decomposition (SVD) algorithm. The union of such
bases of all the past tasks stored in memory is known as gradient
projection memory.

Collating the representations: The representations are the lay-
erwise activation function values corresponding to input, whereas
an activation function can be a differentiable non-linear function
(e.g., Rectified linear unit-ReLLU). For instance, consider the input
as z, using P-layered neural network parameterized by 6 as fy, and
the activation function o(.), then the representations at layer p are
represented as z?.

a” = o(fo(a")) ®)

whereas zP ! is the representation of the input at the layer p—1. After
learning the first task using D!, for each layer ‘p’, a representation
matrix Ry = [z}, ,--- x5, | concatenating ‘2n,’ representations
along the column dimension obtained by the forward pass of ns
randomly chosen exemplars per each class (total 2n,) from D?.



Constructing the bases of gradient span: Now, the SVD fac-
torization is applied on R} = UP¥?(VP)T to obtain its k—rank
approximation (RY), using the following criteria:

IRkl > 07| RY||% (6)

Eventually, the first k—Ileft singular vectors will become the bases for
layer ! concerning the first task. Subsequently, bases of the remaining
layers are constructed thereafter, all layerwise bases of the first task
are stored in gradient projection memory (Mgpm). In other words,
Mgpm = {(Mp)5:1}9 where M? = [uzl),lvug,lv T ,Uiﬂ-

For the subsequent tasks (from 2 to t), new gradients (say Vorr,-
read it as the gradient of the loss value of the second task Lo for the
parameters 6 at the layer p) are projected onto Mgy, and subtract
the projection component. Hence, the residual gradient component
lies in the space orthogonal to the core gradient space.

Vorc, = Verc, — (Verey )M (MHT @)

where M* is the gradient projection memory of the first task.
Now, before applying SVD to find the bases, we need to eliminate
common bases so that newly added bases are unique in GPM [21]
using the following equation:

RY = RE — M*(MY)TRE ®)

where, R} is the representations of layer [ for second task. SVD

is applied to find the k—rank approximations bases and eventually

added to M gpy. Eventually, to conclude, the span of the gradient
space will be the gradient projection memory.

span{VoL1(0),VoL2(0),....,VoLi_1(0)} = Mgpm )
C. Training process

In this section, the training process of the proposed SPIDER
method is described. The training process for each task is split into
four steps, as outlined in Fig. [I] For task ‘¢’, during the first step, the
labeled train data acf_l of the predecessor task ‘¢ — 1’ is forwarded
through the current model fg_l results in creating the activation
values at each layer. To simplify the notations, we denote all layers-
wise activation values {R}_,}1_; as A*~'. After collating A",
the corresponding lower (k)-rank representations A’;;l is computed
using the singular value decomposition algorithm (refer to Eqn(g}).
Subsequently, redundant bases of Af;l concerning the prior tasks
bases are removed using the Gram-Schmidt algorithm, and then
unique bases will be added to the bases of the past tasks (gradient
projection memory M gpm). The remaining step involves training
with the exemplars from the task ‘¢’. Specifically, in the second
step, training samples for each batch 3 are received from three data
sources; labeled data (:rf,yf), unlabeled (zf,) data of the task ‘t’
denoted as B;, B, and the unlabeled data (z! ') of the predecessor
task (‘¢ — 1”) from memory M denoted as B;;'. During the third
step, pseudo labels are generated using fg_l for B, and B' and
denoted as Bu,B:T. Eventually, during the fourth step, each batch
gradient V f§ is projected orthogonally to Mg, to compute the
newer gradient V’fg, which is propagated through all the layers
using the standard backpropagation algorithm. The schematic training
process of SPIDER is given in Algorithm ]

V. PREPARING EXPERIMENTAL SETUP

This section contains the details of the datasets, data preprocessing,
task formulation, and all the experiments’ facets. These include
hyperparameters selection, architecture details, baseline method se-
lection criteria, evaluation metrics, implementation, and hardware
details.
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Fig. 1: Graphical illustration of the end-to-end training process
of the proposed SPIDER method for each task.
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Algorithm 1 Pseudo code of the proposed SPIDER method

1: Input: sequence of tasks {1,2,--- ,t—1,t}, dataset of task ‘¢’ is D! =
{D}{, D!} (labeled and unlabeled portions), size of Dt is |D|, batch
size (b), buffer memory M, no.of samples drawn from M is by, (< b),
labeled data ratio r, model fy, fy trained until task ‘¢’ is fé gradient
projection memory M gpm

2: for each task ’t’ do

3 if ‘¢’ is the first task then

4 while D} is non-empty do

5 B! ~ Dt, where |B'| =b

6: compute gradient V fltg of loss £ on B

7 update f§ using the V ff

8 end while

9 else

10: sample ns exemplars per each class from ’D;Fl
11: compute activations A*~1 of 2ns samples using f571
12: compute A?l using SVD, add it to Mgpm

13: while D? is non-empty do

14: sample Bj* ~ M, where |B]'| = bm

15: brem =b—bm

16: sample B; ~ D}, where |B| = b, = brem X 1
17: by = brem — by

18: By ~ Df, where |By| = by,

19: generate pseudo labels B, and B]]* using f571
20: B=B"UB UB.,

21: compute gradient V fé of loss L¢ on B

22: compute V' fé, orthogonal projection of V fg on Mgpm
23: update f§ using V' ff

24: end while

25: end if

26: replace M with randomly selected samples from D?,
27: end for
A. Datasets

Network intrusion detection datasets: KDDCUP’99 is a widely
used dataset that contains 4.9 million samples with 41 features
each. Its training set includes 24 types of attacks but has been
criticized for its redundancy and lack of representation of real-
world network traffic. NSL-KDD is a newer version of KDDCUP’99
that addresses some of these issues but still suffers from the same
problems. CICIDS-2017 [35]] and CSE-CICIDS-2018 [35] are two
multi-class NID datasets initially curated by the Canadian Institute for
Cybersecurity [19]. However, the authors of [35] found serious flaws
in the original datasets and released the corrected version. It contains
14 attack classes and one benign class and, in total, 2.1 million and



63.2 million samples, respectively. UNSW-NB15 [20]] is a multi-class
NID dataset with nine attack classes and one benign class. It has 2.5
million samples, and approximately 87% of the samples belong to the
benign class. AnoShift [2]] is a new unsupervised anomaly detection
benchmark that builds upon Kyoto2006+. It spans over ten years with
natural temporal variations and almost 90% attack traffic. However,
in this work, we used a subset of the AnoShift benchmark.

While the AnoShift benchmark comprehends distribution shifts
over a decade of network traffic, other NID benchmarks may lack
concept drift as they are artificially generated in a short time
frame [2]]. Consequently, we validate our proposed approaches using
standard continual learning image classification benchmarks. The
visual nature of these image classification benchmarks facilitates the
observation of distribution shifts more effectively.

Distribution shift in NID datasets: Most of the publicly available
NID benchmark datasets are created in a controlled environment
by injecting synthetic (artificial) attacks. Furthermore, these datasets
are curated over a short period. Specifically, CICIDS2017 and CI-
CIDS2018 datasets contain 5 and 11 days of traffic, which may not
be suitable for validating the proposed continual learning method.
Our experimentation with NID datasets shows that concept drift
(distribution shift) is minimal when datasets are curated over a
short time. We hypothesize our claim by measuring the DS between
the tasks using optimal transport dataset distance (OTDD). OTDD
quantifies the similarity (dissimilarity) between the two tasks using
the transportation cost incurred by moving the probability distribution
of one task to another task. OTDD computes the transport cost,
capturing the underlying data density even when the label set is
disjoint between two tasks. The intuition is that the lower the
transportation cost, the higher the similarity between the two tasks;
thus, minimal DS is present.

TABLE II: Comparing the time taken by dataset curations
and the corresponding distribution shift present in the datasets
using OTDD values. The Avg. OTDD value is the mean of the
OTDD values computed between the two adjacent tasks of a
given sequence of tasks for a particular dataset.

Dataset Dataset curation time  Avg. OTDD value
CICIDS-2017 5 days 0.15
CSE-CICIDS-2018 11 days 0.05

AnoShift 10 years 7189

CIFAR-10 - 205

CIFAR-100 - 3139

The relationship between the time taken for dataset curation and
the corresponding number of DS is outlined in Table |l The DS is
measured using the average (Avg.) OTDD values, representing the
mean of OTDD values calculated for two successive tasks within
the given task sequence. In contrast to curated NID datasets, the
AnoShift dataset, spanning a decade, exhibits significantly higher DS
than curated NID datasets, making it uniquely suitable for validating
the proposed CL-based NID method (SPIDER). As a result, to ensure
a thorough evaluation of the proposed approach, we incorporated
standard CL benchmark datasets (MNIST, CIFAR-10/100) in our
experiments by transforming the image classification problem into
an image-based intrusion detection problem. It is worth noting that
CIFAR-10 and CIFAR-100 exhibit higher DS compared to existing
NID benchmarks, excluding AnoShift.

Image classification datasets: MNIST and CIFAR-10/100
datasets are widely used for image classification tasks. MNIST
consists of handwritten digits from 0 to 9, whereas CIFAR-10/100
has 10 and 100 different classes of objects. In our experiments, digit
nine of MNIST is considered as the attack class. In CIFAR-10 and

CIFAR-100, the attack classes are the truck and the superclass vehicle
two, respectively.

B. Data preprocessing

For the KDDCUP’99 and NSL-KDD datasets, three insignificant
columns (columns with more zero entries) were removed, resulting
in 38 remaining columns. These columns were then normalized
using the standard scalar from the sklearn library. Regarding the
CICIDS2017 and CICIDS2018 datasets, they were initially spread
across multiple CSV files. The data from these files were concate-
nated into a single CSV file comprising over 90 features. By removing
flow-specific identifiers and employing feature engineering based on
the Pearson correlation coefficient with a threshold of 90%, the
dataset was streamlined, resulting in the retention of approximately
51 features following the min-max normalization. Similarly, for
the UNSW-NBI15 dataset, four different CSV files were combined,
duplicates were removed, followed by the normalization process. The
preprocessed AnoShift subset (Kyoto 2006+ ) is available here [36],
and we utilized it for our experiments. MNIST, CIFAR-10, and
CIFAR-100 datasets are normalized across the three colored channels
using the mean and standard deviation computed over the entire
dataset. Each benchmark dataset is divided into three segments: 70%
for training, 5% for validation, and 25% for testing.

C. Tasks formulation

Existing CL literature excels at creating tasks from vision datasets.
However, NIDS datasets lack such procedures. Based on our expe-
rience, we advocate for creating imbalanced tasks with more benign
samples (and fewer attack samples) that closely resemble real-world
network traffic and incorporating measurable distribution shifts with
longer task sequences. For KDDCUP’99 and NSL-KDD, we created
five tasks each, and for CICIDS-2017 and CICIDS-2018, we gener-
ated ten tasks. Furthermore, nine tasks were created for UNSW-NB
and ten for AnoShift. For the computer vision benchmarks MNIST
and CIFAR-10, we randomly selected one class as an attack class
and divided and distributed the attack class data among the remaining
benign classes. This ensured that the experiments formulated using
vision benchmarks were similar to the network intrusion detection
experiments. Specifically, for MNIST and CIFAR-10, we created nine
tasks, each containing one of the nine benign classes along with a
chunk of attack class samples randomly chosen as the attack class.
Similarly, for the CIFAR-100 benchmark, we created 19 tasks by
selecting one randomly chosen superclass label as the attack class.

D. Configuring the experiments

Architecture: For NID and MNIST datasets, we utilize a multi-
layer, fully connected (FC) neural network. The AlexNet architecture
is a backbone for CIFAR-10 and CIFAR-100, followed by a network
of FC layers.

TABLE III: Hyperparameter details of different benchmark
datasets

Dataset #tasks  Batch size  input size Architecture Iy wy

NSL-KDD 5 500 38 FC:100,500,250,50,1 107> 1074
KDDCUP’'99 5 1024 38 FC:100,500,250,50,1 1073 1073
CICIDS-2017 10 1024 70 FC:100,250,50,1 1073 1073
CICIDS-2018 10 1024 70 FC:100,500,250,50,1 10-2  107*
UNSW-NBIS 9 1024 202 FC:100,250,500,150,50,1  10—3 103
AnoShift 10 1024 18 FC:100,500,250,50,1 1074 1075
MNIST 9 128 1x32x32 FC:100,150,50,10,1 10t 1078
CIFAR-10 9 128 3x32x32  AlexNet,FC:100,50,1 10! 1075
CIFAR-100 19 128 3x32x32  AlexNet,FC:100,50,1 10-t  107°

Hyperparamaters: We use stochastic gradient descent (SGD)
optimizer in our experiments with a Nesterov momentum value of
0.9. The learning rate decay multistep LR is used at each epoch step
with v = 0.96 for all the datasets. The learning rate (/) and weight



decay (wq) of SGD are fine tuned using the grid search over the
validation set. The early stopping strategy, with a patience value of
3 and a delta error of 0.01, is used on the validation set to improve
the generalization performance. The batch size varies across datasets:
128 for CIFAR-10/00 and 1024 for NID datasets, except for NSL-
KDD, where the batch size is 500. The number of epochs is set to a
maximum value of 100 for all the experiments. More comprehensive
hyperparameter information is available in Table

Baselines selection: After thoroughly reviewing the CL literature,
we have carefully selected baseline methods encompassing a diverse
range of CL approaches. In the supervised CL context, we have
opted for elastic weight consolidation (EWC [26]), which is a
regularization-based approach, average gradient episodic memory
(A-GEM [8]]), a memory-based gradient projection approach, max-
imal interfere retrieval (MIR [27]), which belongs to the buffer
memory-based CL category, class imbalance family of CL methods
(CBRS [18]]), and gradient projection memory (GPM [21]]), an orthog-
onal projection based CL approach). In the case of semi-supervised
CL, we have included pseudo labeling in class incremental learning
(PICIL [31])), a buffer memory-based method. However, we have
decided not to utilize other SSCL methods, such as Distillmatch [30J]
and ORDisCo [29], as they involve image data augmentation tech-
niques (e.g., flip, crop, blur) that are primarily designed for image
classification tasks and are less relevant to non-image datasets like
NID. Hence, we have omitted them from our selection.

Evaluation in SSCL setting: Comparing the efficacy of the SSCL
setting in NIDS performance involves assessing the utilization of
unlabeled data. This assessment is achieved by computing perfor-
mance bounds for NIDS using the lower and the upper-performance
bounds. The lower bound (¢) reflects the performance of the NID
systems where the ML model is trained with limited annotated data,
whereas the upper bound (u) uses fully labeled training data for
training. Based on these performance bounds, the evaluation protocol
quantifies the performance advantages of employing SSCL in the NID
problem. Specifically, Naive methods serve as ¢, whereas EWC, A-
GEM, MIR, and CBRS serve as u.

Evaluation metrics: The metrics selected in this study closely
resemble those used in previous works. Specifically, we adopt the
receiver operating characteristic area under the curve (ROC-AUC)
and the precision-recall area under the curve (PR-AUC) metrics to
evaluate both benign and attack classes, which are denoted as PR-
AUC (B) and PR-AUC (A), respectively.

Implementation and hardware details: We utilize the open-
source continual learning library avalanche (version 0.2.1) for base-
line methods such as EWC and A-GEM. However, employing these
implementations directly pose certain technical challenges, particu-
larly for NID benchmarks. Therefore, we customize them to suit
the requirements of the benchmarks. Additionally, we implement
MIR and CBRS using the PyTorch library (version 1.13.0). We
conducted our experiments on a system with the following specs:
376 GB of memory, 104 cores (Intel(R) Xeon(R) Gold 6230R CPU
@ 2.10GHz), and 2 Nvidia Quadro RTX 5000 GPUs.

VI. PERFORMANCE RESULTS

In Table we present a quantitative analysis by comparing the
proposed SPIDER method with the baseline methods discussed in
the previous section. The following key observations are made.

Firstly, the proposed SPIDER method consistently outperforms all
baseline methods across all benchmark datasets except for A-GEM,
a supervised CL algorithm. However, the performance difference
between SPIDER and A-GEM is relatively small. The consistency
of A-GEM can be attributed to its retention of all past task-
wise representative labeled samples in memory, which helps re-
duce catastrophic forgetting through gradient projections. To validate
the efficacy of SPIDER similarly to A-GEM, we experiment with
a memory M”* containing a subset of labeled samples from all
past tasks, denoted as SPIDER+M"*. This variation improves the

performance of the minority class in large-size datasets exhibiting
distribution shift, such as AnoShift (PR-AUC (B) improves to 0.85).
Notably, SPIDER+M™ becomes the best method on CIFAR-10
and CIFAR-100 datasets (which has frequent distribution shifts
between the tasks). Specifically, the PR-AUC (A) values are increased
from 0.44 to 0.59 on CIFAR-10 and 0.18 to 0.29 on CIFAR-100
datasets, respectively. Regarding other supervised baselines, CBRS
outperforms MIR and EWC on larger NID datasets concerning PR-
AUC on minority classes (particularly CICIDS-2017, CICIDS-2018,
and AnoShift). Conversely, MIR outperforms EWC and CBRS on
image classification datasets (CIAFR-10 and CIFAR-100). MIR’s
performance could be because it maintains the most informative
samples in the buffer memory and handles higher distribution shifts
well.

The second observation is that PLCIL, an SSCL memory-based
method containing a subset of labeled samples from all past tasks,
performs poorly on all datasets compared to supervised baselines and
the proposed SPIDER method. One pragmatic reason for PLCIL’s
performance besides maintaining the labeled samples in memory
could be that its memory organization policy does not consider the
class imbalance in the NID datasets. As a result, PLCIL performance
is comparable to the naive approach, an SSCL method without
memory, acting as a lower bound for any SSCL baseline. This
suggests the need for careful attention to class imbalance under the
SSCL setting when designing novel methods.

Lastly, using GPM [21]] alone to construct representations of past
tasks is also affected by class imbalance, leading to a significant
performance drop for the minority class. SPIDER addresses this issue,
and its performance on the minority class of NID benchmark datasets
outperforms GPM |[21] utilizing memory that only stores unlabeled
samples from the previous task. This phenomenon is empirically
validated and found to be consistent on all the NID and image
benchmark datasets, as shown in Table [Yl In conclusion, SPIDER
improves the performance of the minority class (typically the attack
class) under the SSCL setting in class imbalance compared to baseline
methods.

Computational complexity: We assess the computational com-
plexity regarding required training time, measured in wall clock
time seconds. Specifically, we consider supervised baselines (EWC,
MIR, and A-GEM) while excluding CBRS, as it is solely a reser-
voir sampling-based memory reorganization policy. The wall clock
training times for all methods are presented in Table It can be
observed that using SPIDER method reduces the total training time
to at least half that of the baseline methods. This shows that SPIDER
is more training time-friendly; as a result, it reduces the total training
budget.

A. Ablation study

In this section, we evaluate the robustness of SPIDER’s perfor-
mance by investigating its sensitivity to different hyperparameters.
Specifically, we conduct experiments to explore the impact of the
amount of labeled data used, the effect of memory, and the number
of samples utilized to construct the gradient projection memory.

Performance trends with labeled data: In this study, we analyze
the influence of varying amounts of labeled data on performance. The
corresponding performance trends for NID and image benchmarks are
depicted in Fig. ] and the following observation can be made. We
notice a substantial enhancement in the performance of the minority
class (measured by the PR-AUC value) during the initial increase in
the labeled data used for training, specifically in the range of 2%
to 10%. However, after this point, the rate of improvement becomes
more gradual. We also explored the performance trend based on the
model’s learnability. Specifically, we visualized the model’s learning
capacity by plotting the evolution of the t-SNE visualization of the
parameter values of the last layer of the AlexNet network. This was
done with varying labeled data on the CIFAR-10 dataset’s train set,
as shown in Fig. |2} The results reveal that as the amount of labeled



TABLE IV: Performance comparison of the proposed SPIDER method with baseline methods on different NID and image
classification datasets. Each experiment is repeated with five different task orders using different seed values, and the arithmetic
mean of the ROC-AUC, PR-AUC (B), and PR-AUC (A) values are reported. Red means ranking first, green means ranking

second, and blue means ranking third.

KDDCUP’99 NSL-KDD CICIDS-2017

Method PR-AUC (A) PR-AUC (B) ROC-AUC PR-AUC (A) PR-AUC (B) ROC-AUC PR-AUC (A) PR-AUC (B) ROC-AUC

0.81 0.47 0.51 0.72 0.71 0.70 0.65 0.95 0.87

0.99 0.96 0.99 0.95 0.93 0.94 0.85 0.98 0.96

0.99 0.98 0.99 0.95 0.93 0.94 0.99 0.99 0.99

0.90 0.90 0.89 0.88 0.85 0.82 0.90 0.99 0.97

0.93 0.72 0.66 0.82 0.70 0.67 0.91 0.99 0.97

0.46 0.59 0.49 0.73 0.75 0.73 0.65 0.95 0.87
SPIDER (ours)  0.99 0.97 0.97 0.94 0.90 0.93 0.95 0.98 0.98
SPIEDER + M* 0.9 0.97 0.98 0.93 0.90 0.93 0.88 0.99 0.97

CSE-CICIDS-2018 UNSW-NBI5 AnoShift
Method PR-AUC (A) PR-AUC (B) ROC-AUC PR-AUC (A) PR-AUC (B) ROC-AUC PR-AUC (A) PR-AUC (B) ROC-AUC
Naive 0.42 0.97 0.73 0.71 0.98 0.93 0.78 0.57 0.65
EWC 0.56 0.95 0.75 0.99 1.00 0.99 0.90 0.55 0.76
A-GEM 0.53 0.97 0.50 0.99 1.00 0.99 0.96 0.85 0.92
MIR 0.86 0.99 0.98 0.92 0.99 0.99 0.82 0.43 0.67
CBRS 0.95 0.99 0.99 0.93 0.99 0.99 0.90 0.76 0.83
PLCIL 0.42 0.97 0.73 0.71 0.98 0.91 0.78 0.57 0.65
SPIDER (ours)  0.98 0.99 0.99 0.97 0.99 0.99 0.91 0.83 0.88
SPIEDER + M*  0.99 0.99 0.99 0.93 0.99 0.99 0.92 0.85 0.90
MNIST CIFAR-10 CIFAR-100

Method PR-AUC (A) PR-AUC (B) ROC-AUC PR-AUC (A) PR-AUC (B) ROC-AUC PR-AUC (A) PR-AUC (B) ROC-AUC
Naive 0.40 0.98 0.86 0.20 0.95 0.71 0.04 0.97 0.42
EWC 0.86 0.99 0.97 0.31 0.97 0.84 0.13 0.98 0.75
A-GEM 0.93 0.99 0.98 0.43 0.98 0.88 0.15 0.98 0.80
MIR 0.78 0.99 0.96 0.42 0.98 0.87 0.14 0.97 0.73
CBRS 0.77 0.99 0.96 0.27 0.96 0.78 0.08 0.97 0.66
PLCIL 0.40 0.98 0.86 0.21 0.95 0.71 0.08 0.97 0.64
SPIDER (ours)  0.81 0.99 0.95 0.44 0.98 0.87 0.18 0.98 0.75
SPIEDER + M*  0.82 0.99 0.96 0.59 0.98 0.91 0.29 0.98 0.83

© Benign
©® Attack

© Benign

© Benign
® Attack

© Benign

(@) 7 = 2%, PR-AUC(A) = 0.17  (b) r = 10%, PR-AUC(A) = 0.35

(¢) r = 20%, PR-AUC(A) = 0.50 (d) r = 40%, PR-AUC(A) = 0.54

Fig. 2: The t-SNE visualization shows model learnability on CIFAR-10 using AlexNet’s last layer activations. The PR-AUC

value of the attack class improves with more labeled data (7).

data increases, the PR-AUC value of the minority class improves, and
the corresponding t-SNE visualizations show a convergence towards
creating a distinct class separation boundary.

Effect of buffer memory (M): This study focuses on the impact
of memory on the SPIDER performance using NID datasets, and the
results are presented in Table [VII} The following observations can be
made: The presence of M does not affect the majority class since,
during backpropagation, most of the gradients are dominated by the
majority class. This resulted in the suppression of minority class

gradients, leading to the problem of minority performance drop. This
is a direct consequence of the class imbalance ratio (CIR) affecting
gradient updates, supported by prior work [34]. However, this effect
can be mitigated by replaying minority class samples stored in M. As
a result, the batch-level CIR is reduced, which reduces the gradient
dominance of the majority class and leads to an improvement in the
performance of the minority class.

Effect of varying the projection memory samples (n,): In this
study, we investigate the impact of the number of samples used per



TABLE V: Performance comparison between SPIDER and
GPM using PR-AUC values computed on minority class of
different NID datasets. Each experiment is repeated with five
task orders, and the arithmetic mean values are reported. The
best values are marked in bold.

Method KDDCUP’99  NSL-KDD  CICIDS-2017  CICIDS-2018
GPM [21] 059 0.75 0.95 0.89

SPIDER 0.97 0.90 0.95 0.98

Method AnoShift MNIST CIFAR-10 CIFAR-100
GPM [21]  0.76 0.60 0.41 0.16

SPIDER 0.83 0.81 0.44 0.18

TABLE VI: The proposed SPIDER method’s training time
is compared with the baseline methods in seconds, measured
using wall clock time. Each experiment is repeated with five

task orders, and mean values are reported. The best values are
marked in bold.

Methods KDDCUP’99  UNSW-NB15  CICIDS-2017  CSE-CICIDS-2018  AnoShift
EWC 823 630 370 11914 2144
A-GEM 1397 848 318 9448 3087
MIR 1427 948 804 11752 3086
SPIDER 268 419 231 4420 1560

TABLE VII: The effect of buffer memory on SPIDER’s
performance is assessed using PR-AUC (A) and PR-AUC
(B) values on different NID benchmark datasets. Performance
improvements are highlighted with a red arrow (7).

PR-AUC (A)
Method KDDCUP’99  CICIDS-2017  CICIDS-2018  AnoShift
SPIDER - M 0.99 0.95 0.91 0.90
SPIDER 0.99 091 (1) 0.98(1) 0.91
PR-AUC (B)
Method KDDCUP’99  CICIDS-2017  CICIDS-2018  AnoShift
SPIDER - M 097 0.99 0.99 0.76
SPIDER 0.97 0.99 0.99 0.83 (1)

TABLE VIII: The influence of the number of gradient projec-
tion memory samples on SPIDER’s performance is assessed
using the PR-AUC value of the minority class in each NID
benchmark dataset. Performance improvements are denoted by
red arrows (7). Each experiment is repeated five times with
different task orders, and mean values are reported.

PR-AUC

ns  KDDCUP99 CICIDS-2017 CICIDS-2018  AnoShift
102 097 0.95 0.99 0.82

103 097 0.95 0.98 (1) 0.82

104 097 0.95 0.98 0.82

105 0.97 0.95 0.98 0.83 (1)

each task class (refer to line 12 of the Algorithm [I) to construct
the corresponding task bases before adding them to the gradient
projection memory. It is important to note that when the number
of class samples in each task (n.) is lower than ns (n. < ns), we
always pick the minimum of n. and n,. The results of this study
on the performance of the minority class in NID benchmark datasets
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Fig. 3: Variation in the performance with varying amounts of
labeled data on different NID datasets. Each experiment is
conducted with different task orders five times, and the mean
values are plotted.

are presented in Table m The following observations can be made:
First, there is a slight or no improvement in the performance of the
minority class, which we attribute to the greater challenge in enhanc-
ing the performance of the minority class compared to the majority
class, as explained by the gradient dominance phenomenon in the
previous study (eftect of the buffer memory). Second, we observe that
ns and the size of the datasets are empirically independent on NID
benchmarks. In other words, the minority class detection performance
is not improving by increasing ns on NID datasets. Specifically, the
PR-AUC metric value of the minority class of the KDDCUP’99,
CICIDS-2017, CICIDS-2018, and AnoShift is stable at ns=107, does



not improve with increasing ns.

B. Limitations of the SPIDER and Scope of the Future Work

Our work is motivated to reduce the requirement of annotated
data and the need to eliminate the storage of labeled data in buffer
memory aid to handle the CI of the network data in the continual
learning setting. In light of extensive experiments conducted on NID
and image benchmark datasets, we observe the following limitations
of the proposed SPIDER method.

Closed-world assumption: The goal of the CL framework is to se-
quentially learn new tasks without forgetting (catastrophic forgetting)
the knowledge of the past tasks. Thus, the CL framework naturally
assumes the closed world assumption. In contrast, cybersecurity
defense systems (like NIDS) are meant to be deployed to identify
unseen attacks (zero-day attacks). Thus, an open-world setting is a
natural choice for security applications. This is our initial attempt to
understand the application of SSCL to NID tasks, so in this work, we
consider a closed-world learning setting. As a part of future work, we
will include an open-world learning setting as a primary objective.

Amount of labeled data: In our work, we conducted experiments
varying the amount of labeled data to examine the efficacy of the
proposed SPIDER method. However, for real-world ML-based NIDS
developers, it is not easy to define the amount of labeled data to
consider given terabytes of network traffic generated in an enterprise-
scale environment. Further, annotating a small fraction of network
traffic requires a lot of domain expertise and manual effort (time and
cost). In other words, assuming a labeling oracle is impractical in a
real-world setting.

Evaluation datasets: Evaluating the SPIDER on the public
datasets remains a common constraint in NIDS research. Specifically,
we know that KDDCUP’99 is nearly 2.5 decades old, but we intend
to use it to validate how our proposed approach works in the CL
setting without requiring access to past task data while training on
current task.

Potential extensions to this work involves exploring self-supervised
techniques with continual learning to enhance detection accuracy.
Further, one could develop an unsupervised anomaly detection
method that will continually learn without the need for labels and
identify unseen attacks near real-time at an enterprise-level scale.

C. Concluding remarks

This work was motivated by the limitations of existing approaches
that do not adequately address the issue of adapting to distribution
shifts in the network traffic of benign and attack data in network intru-
sion detection. While unsupervised learning methods do not require
capturing the concept drift of attack classes, their effectiveness can
deteriorate when normality shifts occur. To overcome this problem,
we formulated the NID as a binary classification problem to adapt
to both distribution shifts. However, such a formulation demands
access to large amounts of annotated data and the ability to handle
class imbalance. To solve these challenges, we introduced a novel
semisupervised, continual learning-based method called SPIDER for
NID tasks. The key novelty lies in leveraging gradient projection
memory (GPM) [21] combined with semisupervised continual learn-
ing (SSCL) techniques to handle class imbalance and data privacy
concerns effectively. Unlike existing methods that store all of the
past tasks samples in memory for an extended duration, potentially
compromising data privacy, the proposed SPIDER method requires
storing only unlabeled data in the memory from the previous task.

We conducted an extensive empirical evaluation of SPIDER on six
standard network intrusion detection datasets, including the recent
AnoShift dataset, which exhibits natural distribution shifts over a
decade of network traffic. We also evaluated SPIDER on three
image classification datasets. Our findings demonstrate that SPIDER
achieves a comparable level of performance with baselines (four
supervised CL and one SSCL method), requiring only a maximum
of 20% labeled data, thus ensuring a reasonable level of data privacy.

Furthermore, SPIDER significantly reduced (by 2x) the training time
on NID benchmarks, showcasing its scalability and effectiveness
in handling class imbalance and data privacy in network intrusion
detection datasets. The authors have provided public access to their
code and/or data at [37].
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