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Abstract—5G is designed to meet the requirements of various
network services such as eMBB (enhanced Mobile Broadband),
URLLC (Ultra Reliable Low Latency Communications), and
mMTC (massive Machine Type Communication) by making use
of the technologies such as Software Defined Networking (SDN)
and Network Function Virtualization (NFV). These services can
be provided through isolated virtual networks bringing in the
concept of network slicing in 5G which helps in adjusting the
resources dynamically which in turn can maximize resource uti-
lization across the services. The dynamic adjustment of resources
can be achieved by monitoring slice instances in the Closed
Loop Automation (CLA) to make quick decisions on slice scaling,
selection, etc. In this paper, we propose a Self Regulating Network
Slicing (SERENS) framework for slice monitoring and selection
in 5G. We have developed a prototype of the proposed SERENS
framework in a 5G test-bed system and shown that proper slice
selection can avoid wastage of resources of slices by up to 60%.
The proposed slice selection algorithm will help the operator to
serve a higher number of users while making the efficient usage
of the available resources.

I. INTRODUCTION

5G is being evolved from the existing 4G/LTE radio access
technology replacing the monolithic network entities running
on proprietary hardware with the software modules called
Network Functions (NFs). The NFs are capable of running on
cloud servers/commodity hardware leaving behind the legacy
network’s hardware dependency by making use of Software
Defined Networking (SDN) and Network Function Virtualisa-
tion (NFV) like technologies. 5G system provides various ser-
vices categorised into three types of generic services namely
enhanced Mobile Broadband (eMBB), Ultra Reliable Low
Latency Communications (URLLC), and massive Machine
Type Communication (mMTC). Providing different services
having different Quality of Service (QoS) and Service Level
Agreement (SLA) requirements imposes a huge challenge
to the Service Provider (SP), requiring a flexible network
deployment. Network slicing is the key feature adopted by
5G which helps the SP in setting up different virtual networks
providing specific type of service running on the shared phys-
ical infrastructure, while providing the service level isolation.
If the required resources for the deployed slices are configured
statically, the SP won’t be able to make the best usage of the
available resources due to wastage of physical resources. The

dynamic allocation of the resources to the slice is based on
the current load to maximise the overall revenue for the SP.

Owing to the demand of high availability and reliability on
the services, the SP would deploy multiple slice instances of
the same type [1] leading to challenging and complex situation
of selecting a specific slice instance to serve the incoming
User Service Request (USR). Hence, the network may have
multiple candidate slices capable of serving the incoming
USR. 3GPP [2] defines network slice selection as the process
of selecting an instance of a network slice for the incoming
USR in 5G Core Network (5GC). The new incoming USR
has to be associated with a network slice instance to carry
forward the user centric activities on the 5GC. Performing
dynamic slicing and getting the candidate slices for selecting
the target slice necessitates the requirement of performing
the monitoring and analyzing of network slice life cycle and
load. In this work, we propose a novel SERENS framework
for performing slice monitoring, analytics, and selection to
achieve Self Regulating Network Slicing (SERENS) in the
5GC.

The rest of the paper is organised as follows. Starting
with related work and motivation in Section II, we detail our
proposed SERENS framework of 5GC in Section III which
uses slice monitoring, analytics, and slice selection algorithm
for efficient resource utilization. In Section IV, we demonstrate
the implementation of the proposed SERENS framework in a
5G system which would be used for our performance study
in Section V and conclude our paper in Section VI with the
future work.

II. RELATED WORK AND MOTIVATION

In the literature, sincere efforts have been made in making
the decision of admissibility of a new slice request and a new
user request. In [3], the authors proposed the admission control
algorithm to perform the slice selection for the incoming tenant
request based on its required SLA and available slice resource
by granting the request to the least loaded candidate slice.
In the same context, authors in [4] calculate the bandwidth
and End-to-End (E2E) delay of the provisioned slice(s) and
compared against the SLA requirement to decide on the
admissibility of the new slice request. Authors in [5] predict
the resource requirement of the incoming slice request and
admit the new slice request only if it does not result in978-1-7281-7299-6/20/$31.00 © 2020 IEEE



degradation of the already provisioned slice(s). Authors in [6]
have proposed Machine Learning (ML) based model trained on
the network Key Performance Indicators (KPIs) to predict the
load on the network and selecting the slice type from one of
the pre-defined slice categories (eMBB, URLLC, and mMTC).
In [7], the authors have proposed a slice admission control
framework which makes the decision on the admissibility of
the new slice request on the basis of the available resource
capacity.

The decision of admissibility of the new slice request and
user request urges the close monitoring of slices in 5GC.
Typically, Management and Orchestration (MANO) units have
the provision of reporting the performance management met-
rics, mainly CPU and memory of individual NFs and network
services. However, monitoring and reporting these network
KPIs adds to the complexity of overall slice performance
management, as orchestrator is transparent to 5G system and
core network functions. Additionally, no attention has been
placed in literature so far, on slice selection for an incoming
user request at Network Slice Selection Function (NSSF) in
5GC, after identifying the candidate slices. Hence, we propose
the tightly integrated framework of network slice monitoring
and analytics, capturing both the network slice and network
function specific metrics to achieve self optimization and
regulation in 5GC slice selection. In our previous work [8],
we have addressed the issue of controlling slice activation and
deactivation in 5GC, to achieve dynamic slicing. In this paper,
we focus on achieving self regulation of network slicing in the
5GC using slice monitoring, analytics, and selection.

The following are the key contributions of this work.
• A framework to facilitate the self regulation of network

slices called SERENS using the Closed Loop Automation
(CLA) for achieving the slice monitoring, slice analytics,
and slice selection in the 5GC.

• Algorithms for slice monitoring, slice analytics, and slice
selection in order to study the proposed SERENS frame-
work to optimize the usage of underlying resources.

• Implementation of the proposed SERENS framework in
a 5G test-bed system as a proof of concept and evaluate
the effectiveness of the proposed solutions.

III. SELF REGULATING NETWORK SLICING (SERENS)
FRAMEWORK

In order to manage the 5G system which will have number
of slices operating on the same network infrastructure, we
need slice monitoring, slice analytics and slice selection in
a closed loop manner. So, we propose a self regulation of
network slicing in 5GC based on the CLA mechanism shown
in Fig. 1. The figure depicts the close loop working of the
slice monitoring, slice analytics, and slice selection functions.
The monitoring includes various network and 5G KPIs such
as number of users, latency, reliability, and throughput. The
measurement of the slice level KPIs will be done at the
Network Slice Management Function (NSMF) in 5GC. These
measured KPIs are fed to the slice analytics module at NSSF
of 5GC and updated with the instantaneous load information

of all the available slice instances. The main functionalities
of all the three components of the CLA mechanism of self
regulatory network slicing are described below.

Slice
Monitoring

Slice 
Selection

Slice 
Analytics

Self Regulation
of 5G Network

Slice

Fig. 1: Proposed SERENS Framework using the Closed Loop
Automation.

A. Slice Monitoring at NSMF

The SERENS framework has the slice monitoring function-
ality at NSMF entity of the 5GC, responsible for monitoring
all the deployed slice instances as discussed below.

• Slice LCM Handler: The Slice Life Cycle Management
(LCM) Handler module performs the communication
with the orchestrator entity over its North Bound Interface
(NBI) and controls the life cycle of a network slice.

• Slice Monitoring Module: The Slice Monitoring module
fetches the required KPIs of all the available slices such
as number of registered UEs, total number of registra-
tion requests from different UEs, active UEs, and de-
registered UEs at every slice instance, along with data
plane throughput of the slice instance.

B. Slice Analytics at NSSF

The slice analytics functionality of SERENS framework
resides in the Slice Analytics module of the NSSF entity. At
a given point of time, this module performs data analytics
functionality on the number of USRs received for better
handling the future requests on the candidate slices. For this it
continuously analyses the slice status and load information it
receives from NSMF, to ensure controlling the slice activation
and deactivation of the required slices on a need and timely
basis. Hence, the slice information maintained by this module
helps in getting the set of candidate slices for the incoming
USR and effectively helps to achieve dynamic slicing.

C. Slice Selection at NSSF

In the SERENS framework, NSSF fetches the status and
infrastructure KPIs such as CPU and memory usage along
with 5GC KPIs of every available slice instance, at specific
periodicity, from NSMF. NSSF performs the slice selection for
the incoming USR, using the received slice specific informa-
tion from NSMF. Thus, NSSF along with NSMF take part in
deciding the appropriate slice instance for the incoming USR.

The NSSF entity of the proposed framework has four main
functional modules as described below.



Algorithm 1: The proposed slice selection algorithm.
Input: Incoming Request(Ri) at time i
Result: Target Slice

1 InstanceLoad[ ], RequestsServed[ ];
2 NumberInstances[ ], ExcessInstances[ ];
3 ActiveUsers[ ], AptSlices[ ];
4 InstanceId← 1;
5 if i > StayDuration then
6 removeUSR(i− StayDuration);

7 for t← i to i+TTL by 1 do
8 ActiveUsers[t]← ActiveUsers[t] + 1;

9 while Ri >0 do
10 S ← InstanceIds in decreasing order of Load;

while s in S do
11 t←

min(Ri, SliceCapacity − InstanceLoad[s]);
Ri ← Ri − t; RequestsServed[i]← (s, t);

12 if Ri > 0 then
13 InstanceLoad[ ]← (InstanceId+ 1, 0);

InstanceId← InstanceId+ 1;

14 AptSlices[i]← ActiveUsers[i]÷ SliceCapacity;
15 NumberInstances[i]← Size(InstanceLoad[i]);
16 ExcessInstances[i]←

NumberInstances[i]−AptSlices[i];

• Slice Request Handler: The Slice Request Handler mod-
ule of the NSSF, collects the concurrent USRs arriving
to the network and assigns them to the Slice Selection
Algorithm module for selecting a suitable network slice
instance.

• Slice Profile Registry: This registry of NSSF maintains
the slice instance information it obtains from NSMF,
along with slice SLA and user’s record of slices in a
database, available to other modules of NSSF to use this
stored slice information.

• Slice LCM Controller: This functional module of NSSF
helps in managing the network slice life cycle and put
the received information from Slice Selection Algorithm
module into effect by informing the NSMF to trigger the
corresponding change in the network slice life cycle.

• Slice Selection Algorithm: The Slice Selection Algo-
rithm module of NSSF implements the slice selection
scheme for making the decision of selecting the best can-
didate slice. It informs the Slice LCM Controller module
for triggering the activation/deactivation of a new/existing
slice instance dynamically, achieving dynamic slicing,
while making use of the Big Data Analytics (BDA)
analysis of the incoming requests.

The proposed slice selection algorithm is shown in the
Algorithm 1. All the provisioned slice instances are capable
of serving maximum of SliceCapacity number of users with
the required SLA. The proposed Most Loaded Slice Selection
(MLSS) scheme maps the incoming requests to the slice

instances in decreasing order of their active users. With the
aim of having the minimum number of instances running to
serve the current traffic, the proposed algorithm ensures more
users leave the network from the least loaded instance, leading
to de-commissioning of an active slice instance with no load.

IV. IMPLEMENTATION OF SERENS FRAMEWORK IN 5GC

In order to study the performance of the proposed solution,
we have implemented the proposed SERENS framework in
the NSMF and NSSF network entities of the 5GC, performing
slice monitoring, slice analytics, and slice selection functional-
ities of various deployed slices. The Fig. 2 shows the deployed
architecture for realising this proposed SERENS framework
having the NSSF and NSMF performing self regulation of
network slices. The deployed architecture consists of NSMF
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Fig. 2: Proof of concept system realising the proposed
SERENS framework.

and 5GC Network Function (NF)s orchestrated using the
NFV MANO functions provided by OSM [9] Rel.5. Here
OSM provides the NFV Orchestration (NFVO) and Virtual
Network Function Management (VNFM) functionalities that
supports communicating with different Virtual Infrastructure
Management (VIM)s. We have picked a light weight VIM-
Emulator [10] which emulates the Openstack [11] functions
for VIM named as vim-emu. Vim-emu allows the execution
of real NFs packaged as docker [12] containers in an emu-
lated network topology. NSMF utilizes OSM’s North Bound
Interface (NBI) taking the role of OSS/BSS, responsible for
creating, deploying one or more slice instances of various
types like eMBB, URLLC, and mMTC.

We have used our own 5GC prototype developed in house
based on 3GPP Release 15 which comprises of 5GC control
plane Network Function (NF)s listed as Access and Mobility
Management Function, Network Repository Function (NRF),
Authentication Server Function (AUSF), Unified Data Man-
agement (UDM), and Session Management Function (SMF)
with Service Based Interaction (SBI) between them. SBI is
implemented with REST APIs using HTTP/2 library from
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Fig. 3: Slice level resource utilisation a) CPU usage of slices and b) Memory usage of slices.

nghttp2 [13]. NRF provides service registration and discovery
services to other NFs in the framework. UPF in the 5GC
participates in data plane path with SINK, enabling GPRS
Tunneling Protocol User plane (GTP-U) on N3 with RAN
and N6 interface with SINK.

We have considered that a slice instance includes SMF,
UPF and SINK NFs. AMF, NSSF, NRF, AUSF and UDM are
shared among the slice instances and hence form a common
slice subnet. All the NFs including RAN+UE emulator are
developed as virtualized docker containers each intended to
provide functionalities as micro services such as UE registra-
tion, de-registration, and end-to-end uplink and downlink data
exchange over different network slices.

Randomized Load
Generation

Module

30 Days Load
Pattern

Big Data Analysis
Module

Final Load Pattern

Pre-Defined Load Pattern

Fig. 4: Synthetic Traffic Data Generation Model.

In the deployed architecture, the NSMF first instantiates the
common core network slice subnet with AMF, AUSF, UDM,
and NSSF. It then instantiates and activates a set of required

slice instances of various slice types. Once the common slice
subnet and slice instances are activated, each of the NF in
the common slice subnet and slices registers itself at NRF.
Each NF is now ready to serve the traffic of 5GC control
plane and data plane. Once the RAN+UE emulator function
gets active, it emulates the UE activities by requesting for a
specific slice service. AMF upon receiving the user request
contacts the NSSF to find an appropriate target slice instance
and then creates a service session for the UE on the selected
target slice instance.

V. PERFORMANCE EVALUATION

A. Synthetic Traffic Data Generation

We have used a BDA enabled simulation model for gener-
ating the data set, simulating the actual load pattern of slice
requests coming to the network. Since it is difficult to get the
real data set from the service providers we have used the BDA
based model for generating an incoming requests load pattern
as shown in Fig. 4. The Randomized Traffic Generator module
of the model generates the load pattern of 30 days by using the
input traffic profile. The BDA module of the model generates
the traffic load pattern profile by performing the average value
based analysis on the provided 30 days load profile. The
predicted load (in range of 0-1) from the model is scaled with
a constant factor to get the numeric value of the incoming
requests and observed at a time interval of every 8 minutes.
Each of the incoming slice request has a Time-To-Live (TTL)
field [6] which specifies the time duration for which a request
stays in the network. The TTL field value is specific to the type
of service being requested. We have considered the TTL value
for eMBB, URLLC, and mMTC services in the range of 160-
300 Secs, 150-200 Secs, and 60-100 Secs, respectively. The
observed incoming requests pattern with their TTL value are
used for generating the number of active users for each of the
generic slice types (eMBB, URLLC, and mMTC) as shown in
the first plot of Fig. 5a. The performance of the slice selection
schemes has been studied on the aforementioned slice specific
load patterns. For this performed study we have considered the
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Fig. 5: Number of slice instances in a) mMTC Slice, b) URLLC Slice, and c) eMBB Slice.
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Fig. 6: Number of excess slice instances in a) mMTC slice, b) URLLC slice, and c) eMBB slice.

slice capacity in terms of number of users (in this case, 1000
users).

B. 5G System KPIs using Slice Monitoring in SERENS Frame-
work

The slice monitoring mechanism of the proposed SERENS
framework monitors the 5G systems KPIs with the deployed
architecture depicted in the Fig. 3a and 3b. These figures
show the CPU utilization and memory utilization captured
for the active slice instances by the Slice Monitoring module
using Prometheus [14] at regular intervals. Here, the slice1
represented by 5g sba e2e slice-1 had higher number of users
using it compared to other slices and hence is showing high
CPU and memory consumption.

C. Performance of Slice Selection Algorithm in SERENS
Framework

The slice analytics and selection functionalities of the
SERENS framework is studied with the slice selection
schemes running in the Slice Selection Algorithm module,
while making use of the BDA based analytics performed
at Slice Analytics Module of NSSF to achieve the dynamic
slicing. The Slice Analytics module performs average value
based analysis on the number of incoming USRs, from Slice
Request Handler module, to predict the incoming USR pattern.
The proposed Most Loaded Slice Selection (MLSS) scheme
mentioned in the Algorithm 1 is studied and compared with
Least Loaded Slice Selection (LLSS) scheme which maps the

incoming user requests to the slice instances in the increasing
order of the number of active users and Random Slice Se-
lection (RND) scheme which picks a random candidate slice
instance for serving the incoming USR. The schemes select a
candidate slice in the resource optimised manner and hence we
study their performance on three slice specific load patterns
which are eMBB, URLLC, and mMTC, generated using the
aforementioned simulation model (Section V-A). The schemes
have been compared on the basis of metrics collected using the
Algorithm 1. All three schemes make use of dynamic slicing
to trigger the slice activation of the already provisioned slice
instance(s) by making use of the predicted incoming USR
pattern at Slice Analytics module.

Accordingly, the implemented slice selection schemes as-
sume that the predicted USR pattern to be correct to achieve
the dynamic slicing, while the errors in the prediction can
result in running less number of slice instances than required
and thus, the new USR might face a delay in getting the target
network slice instance.

In Fig. 5, we record the number of active slice instances
running to serve the active users. The plots of Fig. 5 shows the
observed metric value for the slice specific load patterns. Due
to higher TTL value for the incoming eMBB slice request,
there are higher number of active users on the eMBB slice
as compared to URLLC and mMTC slices at a given point
of time. Presence of higher number of active users demands
the requirement of running higher slice instances, in order
to meet the requirements of the user traffic. We can observe
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Fig. 7: CDFs of number of excessive slice instances in a) mMTC slice, b) URLLC slice, and c) eMBB slice.

that the proposed MLSS scheme has less number of active
slice instances than the other two schemes (LLSS and RND)
because MLSS scheme places the incoming USR in the
resource optimised manner, allowing SPs to decommission
an active slice instance (having no active user) and make
better use of the available resources. On the other hand, LLSS
scheme and RND scheme are observed to run more number of
slice instances as they possess poor slice selection techniques
from the active slice instances.

Fig. 6 shows the number of excessive slice instances running
for each of the studied slice specific load pattern, as compared
to the ground truth value, which represents the minimum slice
instances needed to support the active users on the slice. We
can observe that the proposed MLSS scheme is using excessive
slice instances for less amount of time compared to other two
schemes. LLSS scheme and RND scheme used an excessive
slice instance for 45% and 30% of the time, respectively for
mMTC and URLLC slices, and 60% and 50% of the time
respectively for eMBB slices as compared to the proposed
scheme. For the mMTC slices, we observe that the proposed
MLSS scheme runs an excessive slice for just about 6% of the
time as compared to the ground truth value, while the same
value goes to 12% and 17% for URLLC and eMBB slices,
respectively.

Fig. 7 shows the Cumulative Distribution Function (CDF)
for excessive slice instances across different slices. We can
observe that the proposed MLSS scheme shows high proba-
bility of having less excessive slice instances running across
all the slice types as compared to LLSS and RND schemes.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a Self Regulating Network
Slicing (SERENS) framework performing the Monitoring,
Analytics and Selection of the slice instances in a closed
loop automation to serve incoming user requests for efficient
resource utilization. Our proposed SERENS framework helps
the service provider to monitor the 5GC function’s KPIs at
the slice level and use it to select the candidate slices for the
incoming user requests. Our study has shown that the proposed
MLSS scheme outperforms the LLSS and RND schemes. This
proposed MLSS scheme makes the best use of the available
resources by handling the incoming slice traffic with minimum
slice instances and thus, benefiting the service provider in

terms of making higher revenue with the available resources.
In future, we plan to introduce the Machine Learning (ML)
based model(s) using a more realistic and noisy data set for
the number of user requests to predict the number of slice
instances required at a given point of time and evaluate the
performance of the model(s) with our proposed MLSS scheme.
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