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Abstract—Vehicular applications such as Augmented Reality
(AR), Virtual Reality (VR), and High Definition Map (HD Map)
are known for their latency-sensitive traits. But, dynamic schedul-
ing at the MAC layer incurs significant signalling overhead (in
terms of Scheduling Requests (SRs) in Uplink (UL)), leading
to non-negligible latency in 5G NR. To address this issue, 5G
NR introduces Configuration Grant (CG) for UL transmission,
which pre-allocates radio resources to UEs (vehicles), thereby
reducing signalling overhead between a vehicle and the Base
Station (gNB). However, the high-speed mobility of vehicles results
in rapid changes in channel conditions. Employing CG in a
vehicular scenario can lead to incorrect assignment of transmission
parameters (e.g., Modulation and Coding Scheme (MCS)), thereby
adversely impacting the vehicles’ Packet Delivery Ratio (PDR). To
address this issue, this paper proposes a CG allocation algorithm
that utilizes a Machine Learning (ML)-driven approach to predict
the future MCS of vehicles. A data-driven ML model, derived from
a real-world dataset, assists the radio resource scheduler and is
evaluated using the NS-3 5G-LENA CG module. The ML-assisted
CG allocation algorithm demonstrates significant improvements in
terms of PDR and spectrum usage efficiency in vehicular scenarios.

Index Terms—Configured Grant, Vehicular Applications, Ma-
chine Learning, Radio Resource Scheduling.

I. INTRODUCTION

VEHICULAR applications, such as High-Definition Map
(HD-map), Augmented Reality (AR), Virtual Reality

(VR), and services assisted by the Vehicle-to-Everything (V2X)
network, have the potential to significantly enhance traffic effi-
ciency, road safety, and alleviate congestion. These applications
are computationally intensive and generate Uplink (UL) traffic,
necessitating the successful delivery at least 99.99% of packets
with a packet delivery time below 1 msec [1]. To reduce packet
delivery time, 3GPP has introduced several new technologies
as part of 5G New Radio (NR) such as Configured Grant
(CG), multiple numerologies, Bandwidth Parts (BWPs), service
multiplexing, and mini-slotting.

To minimize packet latency at the MAC layer, 5G NR
specifications [2], [3] introduce two types of UL channel access
methods. In dynamic scheduling, a UE1 sends a Scheduling
Request (SR) to a gNB, seeking radio resource allocation for
data transmission. The gNB performs scheduling and provides
a Scheduling Grant (SG) to the UE (vehicle), containing a time-
frequency grid and transmission parameters (e.g., Modulation

1Throughout this paper we use vehicles and UEs interchangeably.

and Coding Scheme (MCS)). Once the SG is received, the
vehicle can transmit data in its assigned slot. However, the
additional signaling overhead between the vehicle and gNB
can introduce delays that may violate latency requirements for
vehicular applications. To eliminate latency-inducing schedul-
ing operations, CG channel access method is put forward,
which pre-allocates radio resources in advance based on the
periodicity (i.e., Inter Packet Arrival Time (IPAT)) and packet
size of the data generated by the vehicular application. In [4],
the authors explored the CG mechanism for shared channel
resources, addressing both periodic and sporadic (random)
traffic of UEs in an Industry 4.0 factory environment. Another
study by the authors of [5] demonstrated that employing CG
with different scheduling policies reduces Radio Link Control
(RLC) delay in Industry 4.0 scenarios compared to dynamic
scheduling. However, to the best of the authors’ knowledge, the
influence of UE mobility on Packet Delivery Ratio (PDR) and
radio resource efficiency has not been thoroughly investigated.
Therefore, there is a need to examine CG allocation in vehicular
networks and the associated trade-offs that impact the overall
performance of vehicular applications.

In vehicular environment, CG allocation approach becomes
challenging due to high-speed of vehicles that experience
rapid channel variations, causing frequent fluctuations in MCS
values. Due to this reason, implementing CG in a V2X network
can adversely affect vehicles’ PDR, leading to significant
performance degradation in vehicular applications. Therefore,
predicting future MCS plays an important role in assigning ra-
dio resources to a vehicle for CG allocation to ensure successful
packet delivery. Thereafter, careful adjustment of CG allocation
at appropriate intervals (i.e., CG configuration window (CGw))
is necessary for the conservation of radio resources. The main
contributions of this paper are as follows:

• We study the effect of changing CG configuration window
(i.e., CGw) on PDR and radio resources usages. Here,
the CGw should be carefully chosen to ensure effective
smoothing out channel variations caused by the fast fading
of a vehicle while also considering the time-dependent
changes in path loss.

• We propose a Long Short-Term Memory (LSTM) CG allo-
cation algorithm for V2X networks. Here, LSTM model is
trained using a real-world dataset called Berlin V2X [6] to



predict MCS of vehicles for assisting the MAC scheduler
in allocating CGs.

• Simulation results show that the proposed LSTM-assisted
radio scheduling algorithm and changing CG allocation
according to chosen CGw increases PDR by 14%, 44%
and saves radio resources by 6%, 2% for numerologies 1
and 2, respectively, over baseline schedulers.

The rest of the paper is organised as follows: Section II
presents the related work. Section III explains system model in
detail. Section IV presents CG scheduling in vehicular scenario.
Section V illustrates simulation setup, Berlin V2X Dataset
and discusses performance evaluation, depicted through graphs.
Finally, we conclude our paper in Section VI

II. RELATED WORK

Although there has been research efforts [4], [5] focusing on
the use of CG for sensor data in the context of Industry 4.0
factory use case, the primary emphasis has been on selecting
optimal CG and meeting latency requirements for UEs in spo-
radic or random traffic scenarios. Further, utilization of machine
learning approaches to assist in CG method has been explored
in research. For instance, in [7], multiple active CGs are
employed for URLLC UEs to support bursty traffic. The authors
propose a Double Deep Q-Network-based algorithm to allocate
resources while adhering to latency. In another study [8], an
energy model based on real-world setups is introduced to pre-
dict smart grid traffic, followed by radio resource allocation for
CG aimed at improving latency and spectrum usage efficiency.
Additionally, in [9], an Auto-Regressive Integrated Moving
Average (ARIMA) model is proposed for predicting future
traffic demands using real-world data. This prediction model
facilitates radio resource management between URLLC and
Enhanced Mobile Broadband (eMBB) slices for CG allocation.

Differing from prior studies, this paper presents a novel
contribution by predicting the MCS value to do CG allocation
and setting the CGw based on the average vehicle speed. The
aim is to investigate their combined impact on PDR and radio
resource utilization efficiency, while considering the associated
trade-offs. To the best of our knowledge, this is the first work
to propose a machine learning approach that predicts MCS and
adjusts the CG allocation based on the average vehicle speed,
with the objective of enhancing PDR in V2X networks.

III. SYSTEM MODEL

To study the impact of CG transmission on the PDR of
vehicles in a 5G NR V2X network, we examine a scenario
where V vehicles operate within the coverage of a single gNB.
The vehicles generate data packets with a certain periodicity
(i.e., IPAT) and fixed data sizes. The gNB plays a key role
in efficiently allocating CGs to these vehicles, utilizing traffic
information received from the vehicles and channel state in-
formation. This process involves vehicles sharing their traffic
details, including periodicity and size of data packets, with the
gNB using Radio Resource Control (RRC) messages, thereby
facilitating the effective allocation of CG.

To facilitate radio resource allocation, the gNB employs a
scheduling algorithm and sends associated transmission pa-
rameters, including the UL MCS and Resource Blocks (RBs),
to the vehicles. To do that, gNB utilizes RRC message to
convey the allocation of RBs along with the starting, ending
slots and UL MCS to the vehicles for Type 1 CG allocation
which adheres to the 3GPP’s 5G specs [10]. The gNB can
adjust the assigned RBs and UL MCS to vehicles using RRC
reconfiguration message at specified intervals i.e., CGw. This
flexibility enables the gNB to reassign RBs based on the UL
transmission requirements of the vehicles, which in turn depend
on the vehicles’ speeds, as illustrated in Fig. 1. The dynamic
nature of RBs assignment contributes to efficient radio resource
utilization in vehicular networks. The UL transmission in this
scenario employs Orthogonal Frequency-Division Multiplexing
(OFDM) with a Time Division Duplex (TDD) system, ensuring
efficient utilization of the available spectrum.
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Figure 1: System model illustrating CG configuration, UL data
transfer, and CG reconfiguration as a vehicle moves inside the
coverage region of a gNodeB.

IV. CG SCHEDULING IN VEHICULAR SCENARIO

In this section, we present a radio resource scheduling
mechanism for the CG allocation to minimize packet drops in
a vehicular scenario. Packet drops can occur because the gNB
pre-assigns transmission parameters {UL MCS, RBs} for future
UL data transmissions which may not be robust/sufficient due to
vehicle maneuver. In case more RBs are assigned than required,
then wastage of resources happens, thereby reducing spectral
efficiency. Conversely, fewer RBs are assigned than required;
packet drop occurs during transmission, decreasing PDR and
counteracting this key goal. Here, CGw plays a significant
role in increasing PDR and conserving radio resources. A
larger CGw can increase the PDR of a vehicle, but resulting
in overuse of radio resources. On the contrary, a smaller
CGw increases the number of control messages required but
resulting in reduced resource consumption. Hence, challenge
is to efficiently allocate RBs for a vehicle and configure an
accurate CGw for CG allocation.
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Figure 2: Training and operation flow of LSTM prediction
module using a dataset for predicting MCS values to assist
the MAC scheduler. CG configuration message is shown for
initial CG allocation while CG reconfiguration message is used
to modify transmission parameters (e.g., UL MCS and RBs
allotted) of a vehicle at specified CGw intervals.

Algorithm 1 LSTM-Assisted CG allocation
inputs : VallMCS = {v1, v2, . . . , vi} (i ∈ V),

vi =
{
mcs1,mcs2, . . . ,mcs|CGw|

}
,

Rv = {∅}, MCSv = {∅} , V
output: Number of RBs per UE Rv (v ∈ V)
forall vi ∈ VallMCS do

// Initialize a list to store predicted MCS values
MCSpred ← ϕ
// Predict MCS values using LSTM model
MCSpred ← LSTMpredict(vi)
// Find the minimum MCS from MCSpred list
MCSv ← MinimumValue(MCSpred)

end
/* Calculate CG allocation for each UE based on the
corresponding minimum MCS value */
Rv ← CalculateCGallocation(MCSv)

To achieve efficient CG allocation, we leverage a machine
learning mechanism, specifically LSTM, to predict the MCS
of vehicles, as depicted in Fig. 2. LSTM is a variant of
Recurrent Neural Network (RNN) specifically designed to
capture and learn long-term dependencies by leveraging the
information retained from previous iterations of the learning
process [11]. At every CG allocation, historical MCS data of
the vehicle, serves as input for the LSTM model to predict
future MCS of the vehicle as given in Algorithm 1. The
algorithm begins with an empty set of RBs allocated to each
UE v, v ∈ V is empty, i.e., Rv = ∅. The algorithm then
iterates over all the UEs in VallMCS , where each UE vi ={
mcs1,mcs2, . . . ,mcs|CGw|

}
contains previous CGw MCS

values. Next, for each UE v in VallMCS , the algorithm predicts
the MCS values for v using the LSTM model (LSTMpredict

()) and stores in MCSpred. After that, the algorithm finds the
minimum MCS (MinimumValue ()) value MCSv among
the predicted values MCSpred for each vehicle v. Finally,
the algorithm calculates the number of RBs for CG allocation
(CalculateCGallocation ()) for the vehicle v, using
minimum MCS values in MCSv and updates it in Rv , v ∈ V .

In this process, the LSTM model assists the radio resource
scheduler in allocating UL RBs to vehicles using Type-1 CG.
Subsequently, the gNB conveys new transmission parameters
(UL MCS and RBs) to a vehicle using the RRC reconfiguration
message at every CGw. Upon receiving the new transmission
parameters from the gNB, the vehicle starts using these param-
eters to send pending packets. Further, the UL grant recurs
using the approach mentioned in [2] for each symbol in a
duration of CGw. Here, a larger CGw offers the possibility
of more accurately predicting MCS value for a vehicle. The
reason behind this is the wider range of MCS data a larger
CGw encompasses, which contributes to better training of the
LSTM model. Consequently, such accurate predictions could
lead to improvements in CG allocation for a vehicle. At every
CGw, the input values to the LSTM model are adjusted based
on the vehicle’s MCS value history from the last CGw. Thus,
an efficient LSTM model assigns RBs to a vehicle by assigning
probable MCS values for a vehicle. Essentially, the LSTM
model is used to balance the trade-off between RBs usage
efficiency and PDR of a vehicle.

V. SIMULATION AND PERFORMANCE EVALUATION

In this section, we discuss the simulation setup, the dataset
used to train the LSTM model, simulation results, and analy-
sis. Additionally, we explore different CG allocation schemes
employed in the study.

A. Simulation Setup

As a case study, we used HD-Map application to evaluate
the performance of the proposed scheme on the NS-3-based
open-source CG implementation in 5G-LENA [5], which is
used to realize 5G links for vehicles in the 5G NR-based. We
consider the highway scenario where road segments taken from
a city in Canada (i.e., Winnipeg) consist of a two-way Pembina
Canada Highway of 250 meters stretch in length. Further,
Rapid Cellular Network Simulation Framework (RACE) [12]
is used to generate customised vehicular traffic. RACE frame-
work uses the Simulation of Urban Mobility (SUMO)2 and
OpenstreetMap3 to generate the vehicle traffic and real cellular
infrastructure dataset provided by the Canadian organization
of Innovation, Science and Economic Development (ISED)4 is
used. Vehicles generate CBR traffic for UL transmission with
fixed periodicity and packet size. Here, simulation parameters
are summarized in Table I and set according to [5]. Herein,
simulation is repeated with 10 different random seeds and
results are presented with 95% confidence interval.

2http://www.sumo.dlr.de/userdoc/SUMO.html
3http://www.openstreetmap.org/
4https://sms-sgs.ic.gc.ca/eic/site/sms-sgs-prod.nsf/eng/h 00010.html



Table I: Simulation Parameters

Parameter Value
Number of vehicles |V| 15
Mobility model Krauss
Average vehicle speed (Vspeed) 20 - 80 kmph
5G NR gNB/Vehicle TX power 46/23 dBm
5G NR gNB antenna tilt 15◦

5G NR gNG/Vehicle antenna height 25/1.5 meter
Carrier frequency 5.9 GHz
Channel model UMa LoS
5G NR gNB antenna model OmniDirectional
Vehicle antenna model Isotropic
Channel bandwidth 30 MHz
5G NR numerology (µ) 1, 2

5GL-OFDMA
LSTM-5GL-OFDMA

Radio scheduler RB-OFDMA
LSTM-RB-OFDMA
SR-Based-RR

Packet Size (L) 60 bytes
Packet Periodicity (IPAT) 10 msec
Slot Configurations 1D13U
CG Configuration Window (CGw) 5-15 seconds

B. Berlin V2X Dataset

We use the publicly available Berlin V2X dataset [6] to
train LSTM model. Berlin V2X is a measurement campaign
to capture vehicle and wireless network data collected over
highways, avenues, tunnels, residential and West Berlin Park
to do machine learning studies. In the dataset, the two vehicles
are 1.2 to 3 km apart, and the route stretches to 17.2 km. Vehicle
data is collected for 45 minutes driving on weekdays for three
days for a granularity of 10 msec. Here, vehicles are connected
to a server over the LTE network of Vodafone, and Deutsche
Telekom. UL/DL data is generated using MobileInsight, Tcp-
dump and Iperf using dedicated measurement equipment placed
on the vehicle.

The parameters of LSTM: The parameters of LSTM model
encompass its feature, timestamp, lead-time, and learning rate
η. The feature of the LSTM is determined by the dimensionality
of the input data. Since the prediction model takes only the
previous MCS value, which is one-dimensional data, the feature
is set to 1. The timestamp parameter dictates the number
of historical values used to predict subsequent values. After
conducting numerous experiments, it has been observed that
setting the timestamp to 15 yields optimal accuracy for the
LSTM model. Therefore, the timestamp is fixed at 15. Lead-
time denotes the future time span for which data prediction
is required, and it is set as the duration of CGw. Regarding
the learning rate η, a default value of 0.01, as documented in
Keras [13], is chosen. Finally, the ideal number of training
epochs for the LSTM model has been found to be 100,
following extensive experimentation. We have split the dataset
into two parts for training and validation, where the validation
part is one-fourth of the data.

C. Comparison Schemes

We consider the following state-of-the-art, proposed, and
baseline CG radio resource scheduling schemes:

• 5GL-OFDMA [5]: 5GL-OFDMA, a constrained version
of OFDMA in 5G NR, allocates one RB in the frequency
domain and all the OFDMA symbols within a slot to a
UE. Additionally, 5GL-OFDMA allows the division of
the OFDMA symbols within a slot into two or more seg-
ments, each with a different or equal number of OFDMA
symbols. The radio resources within each segment can be
accessed by the UEs assigned to the same antenna beam.

• RB-OFDMA [5]: The RB-OFDMA scheduling policy op-
timizes resource allocation by minimizing the number of
RBs assigned to UEs. UEs are divided into sets, where the
last set of UEs may have fewer RBs assigned compared
to other sets. The scheduling policy follows a first-come,
first-served order, and radio resources are allocated from
the first to the last symbol within a slot. RB-OFDMA
efficiently distributes RBs among the maximum number of
UEs, considering the minimum RBs required for each UE.
RB-OFDMA calculates the minimum number of OFDMA
symbols in the frequency domain and RBs in the time
domain for resource assignment, aiming to minimize the
number of RBs unallocated to UEs. Additionally, each UE
is guaranteed to receive at least some arbitrary RBs.

• LSTM-5GL-OFDMA: LSTM-5GL-OFDMA is a LSTM-
assisted 5GL-OFDMA algorithm that takes predicted MCS
inputs from the LSTM model.

• LSTM-RB-OFDMA: LSTM-RB-OFDMA is an LSTM-
assisted RB-OFDMA algorithm that utilizes predicted
MCS inputs from the LSTM model.

• SR-Based-Round Robin (SR-Based-RR): SR-Based-RR
scheduler allocates a fixed amount of RBs to each user
in a sequential order. SR-Based-RR ensures that each UE
gets an equal opportunity to access the shared resources.

The state-of-the-art CG resource allocation schemes are
5GL-OFDMA and RB-OFDMA, while LSTM-5GL-OFDMA,
LSTM-RB-OFDMA are proposed LSTM-assisted schemes, and
SR-Based-RR serves as the baseline. The following perfor-
mance metrics are used to evaluate the performance of proposed
schemes:

• Packet Delivery Ratio (PDR): PDR signifies the proportion
of successfully delivered packets in comparison to the total
number of packets sent in a network.

• RLC delay: The RLC delay refers to the time elapsed from
the generation of a packet at the RLC layer of a UE to its
reception at the RLC layer of the gNB.

• Average RBs allocation: The Average RBs allocation
metric is a measure used to evaluate the efficiency and
effectiveness of RB utilization. It indicates the percentage
of allocated RBs by different CG allocation schemes,
calculated with respect to the total number of RBs used
for SR-Based-RR scheduling.

D. Simulation Results and Analysis
1) Effect of CGw on PDR: To assess the impact of CGw

on PDR, we varied the CGw size from 5 to 20 seconds with a
step size of 5 seconds for LSTM-5GL-OFDMA and LSTM-RB-
OFDMA. In Fig. 3, we plotted the PDR for Vspeed = 60 kmph



of vehicles, while fixing the numerology µ = 1 and the packet
size L = 60, and varying CGw. The results demonstrate
that with an increase in CGw from 5 to 20 seconds, the
PDR improves until reaching the value of 15 seconds for both
LSTM-RB-OFDMA and LSTM-5GL-OFDMA. The prediction
of MCS values by the LSTM model depends on the size of
CGw. Properly tuning the CGw can lead to improved PDR,
particularly when the CGw is aligned with the environmental
conditions (i.e., vehicle mobility patterns). For the remainder
of the simulation, we fixed the CGw value to 15 seconds for
Vspeed = 60 kmph.
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Figure 3: PDR for HD Map application with µ = 1 by varying
CGw for V = 15 with Vspeed = 60 kmph where L = 60.

2) PDR and RLC delay: Figs. 4(a) and 4(b) show the PDR
and RLC delay for LSTM-5GL-OFDMA, LSTM-RB-OFDMA,
5GL-OFDMA, RB-OFDMA and SR-based-RR (aka dynamic
scheduling) approach for µ = 1 and µ = 2 for Vspeed =
60 kmph. As we can see from the figure, LSTM-5GL-OFDMA
and LSTM-RB-OFDMA algorithms perform better in terms of
PDR and are close to SR-based-RR. This demonstrates the
efficacy of the predicted MCS values using the LSTM model. In
contrast, 5GL-OFDMA and RB-OFDMA achieve lower PDR
because they do not use robust transmission parameters {UL
MCS, RBs}. Further, RB-OFDMA incurs less RLC delay com-
pared to 5GL-OFDMA due to the efficient allocation of RBs
resulting in latency/PDR trade-offs. However, 5GL-OFDMA is
more robust for vehicle mobility because allocation happens
in the frequency domain rather than in time/frequency, thereby
achieving better PDR as compared with RB-OFDMA. On the
other hand, SR based approach performs best in terms of PDR
but is always accompanied by an extensive RLC delay caused
by control messages exchanged between gNB and vehicles.
However, PDR is low for µ = 2 compared to µ = 1 for all
radio resource algorithms due to the fragmentation of packets
happening more in µ = 2 because of the reduced slot time.
The LSTM-5GL-OFDMA algorithm shows a consistent upward
trend in comparison LSTM-RB-OFDMA, 5GL-OFDMA, RB-
OFDMA and results in an increase in PDR of 14% and 44%
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Figure 4: Result observed for HD Map application by varying
numerology for V = 15 with Vspeed = 60 kmph where L = 60
and CGw = 15.

for µ = 1 and µ = 2, respectively, when compared to 5GL-
OFDMA.

3) Speed of vehicles: To study the impact of the speed of
vehicles on PDR for different radio resource algorithms, the
average speed of vehicles is changed using acceleration and
speed parameters of vehicles in SUMO. Thereafter, results for
different numerology are taken by exporting SUMO traces in
NS-3. As shown in Figs. 5(a) and 5(b), PDR drops with an in-
crease in the average speed of vehicles from Vspeed = 20 kmph
to Vspeed = 80 kmph for µ = 1 and µ = 2 for all algorithms
under study. Impressively, LSTM-5GL-OFDMA performs close
to the SR-based-RR approach for both numerologies.

4) Average RBs allocation: Fig. 6 depicts the average ra-
dio resource allocation of LSTM-5GL-OFDMA, LSTM-RB-
OFDMA 5GL-OFDMA and RB-OFDMA for µ = 1 and µ = 2
for Vspeed = 60 kmph and L = 60. We can observe that
RB-OFDMA uses 20% and 19% more radio resources than
5GL-OFDMA to serve vehicle demand for µ = 1 and µ = 2,
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Figure 5: Result observed for HD Map application by varying
speed of vehicles for V = 15 where L = 60 and CGw = 15.
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Figure 6: RBs allocation with respect to SR-based-RR observed
by varying numerology for V = 15 with Vspeed = 60 kmph
where L = 60 and CGw = 15.

respectively, but RB-OFDMA incurs less RLC delay. Moreover,
LSTM-RB-OFDMA and LSTM-5GL-OFDMA use 14%, 6%
and 20%, 2% less RBs than RB-OFDMA, and 5GL-OFDMA

for µ = 1 and µ = 2, respectively. The reason is, ML-
driven LSTM predictive model forecasts vehicle’s transmission
parameters {UL MCS, RBs} for vehicles. Thereafter, gNB re-
configures transmission parameters using RRC reconfiguration
message at a specified window of CGw = 15, enabling radio
resource savings.

VI. CONCLUSIONS

This paper presented the first insight into using Configured
Grant (CG) in Vehicle-to-Everything (V2X) networks. Here, we
considered a case study where vehicles run HD-Map applica-
tions which generate packets at a fixed periodicity and packet
size. To efficiently allocate CG in a vehicular scenario, we
proposed an LSTM-assisted CG algorithm. The LSTM model
was trained using a real dataset from Berlin V2X, enabling
accurate predictions of a vehicle’s future MCS and assisting in
efficient radio resource scheduling. Specifically, the efficacy of
the LSTM model demonstrated PDR enhancement and radio
resource saving for vehicles by changing the transmission
parameters of a CG using RRC reconfiguration messages at a
fixed window size. Moreover, we showed that the allocation
of radio resources in the frequency domain is more robust
as compared to time-frequency domain allocation for moving
vehicles. This paper lays the groundwork for future research
for CG usages in V2X networks.
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