

Enhancing Uplink Scheduling in 5G Enabled Vehicular Networks: A Cross-Layer Approach with Predictive Buffer Status Reporting

Veerendra Kumar Gautam, Venkatarami Reddy Chintapalli,
Bheemarjuna Reddy Tamma and C. Siva Ram Murthy

Networked Wireless Systems (NeWS) Lab
Department of Computer Science & Engineering
Indian Institute of Technology Hyderabad

భారతీయ సౌండేలిక విజ్ఞాన శాఖలు హైదరాబాద్
భారతీయ ప్రోఫెసరీ సర్కారు హైదరాబాద్
Indian Institute of Technology Hyderabad

Contents

- 1 Introduction
- 2 System Model and Offloading Application
 - System Model
 - HD Map Task Offloading Application with OCTANE and RETALIN
- 3 Proposed Solution
 - Cross-layer framework and BSR prediction.
 - Grant-based UL procedure with BSR prediction.
 - Utility Metric
 - Scheduler running at MEC Server
 - Scheduler running at gNodeB
- 4 Performance Results
 - Performance Metrics
 - Offloading Success Rate Results
- 5 Conclusions

Motivation: High Definition (HD) Map over 5G NR V2X

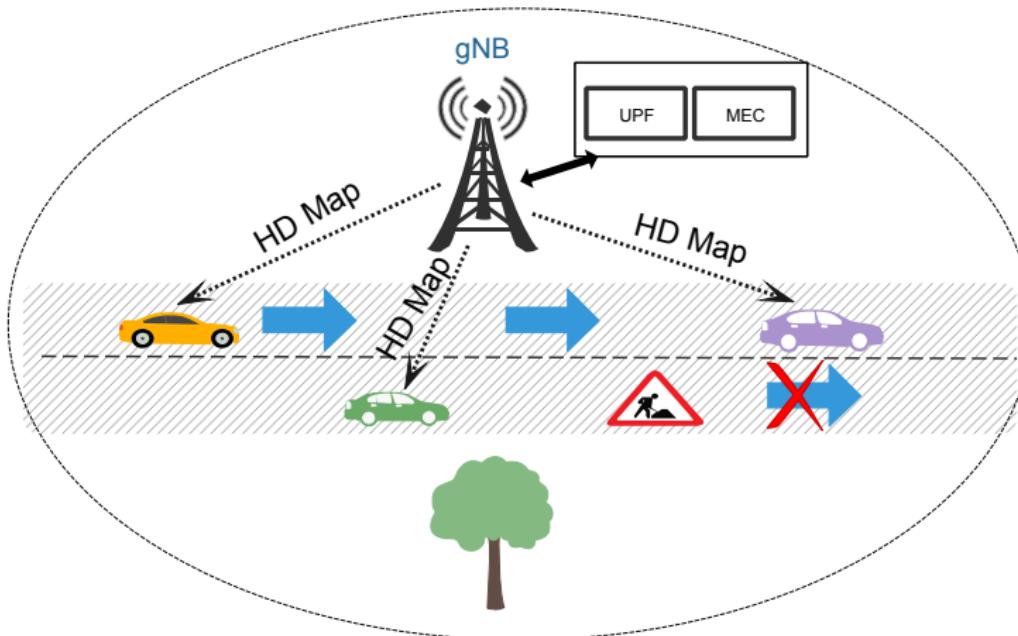
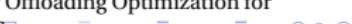


FIGURE 1: HD Map exchange between vehicles and MEC Server over 5G network

Challenges in supporting HD Map App over 5G NR V2X

- Vehicles must complete computational tasks within strict deadlines, even under varying channel conditions.
- The use of higher numerologies can lead to increased signaling overhead, particularly in terms of SRs in the UL, especially for applications with a heavy UL load.


Mobility-Aware Multi-User Offloading Optimization for Edge Computing¹

Objective of the paper

- Computational offloading decision and computational resource allocation.
- They considered the trade-off between task latency and energy consumption.
- Vehicle mobility in the process of task offloading is considered in the optimization.
- In the paper, the authors designed constraints to account for resource limitations, user mobility, and task latency requirements. This optimization problem is formulated as a mixed-integer nonlinear programming (MINLP) problem.

¹ Reference: W. Zhan, C. Luo, G. Min, C. Wang, Q. Zhu and H. Duan, "Mobility-Aware Multi-User Offloading Optimization for Mobile Edge Computing," in IEEE Transactions on Vehicular Technology, vol. 69, no. 3, pp. 3341-3356.

Mobility-Aware Multi-User Offloading Optimization for Edge Computing¹

Objective of the paper

- Computational offloading decision and computational resource allocation.
- They considered the trade-off between task latency and energy consumption.
- Vehicle mobility in the process of task offloading is considered in the optimization.
- In the paper, the authors designed constraints to account for resource limitations, user mobility, and task latency requirements. This optimization problem is formulated as a mixed-integer nonlinear programming (MINLP) problem.

Limitation

Jointly considering the radio and computational resources for offloading decision.

¹ Reference: W. Zhan, C. Luo, G. Min, C. Wang, Q. Zhu and H. Duan, "Mobility-Aware Multi-User Offloading Optimization for Mobile Edge Computing," in IEEE Transactions on Vehicular Technology, vol. 69, no. 3, pp. 3341-3356.

System Model

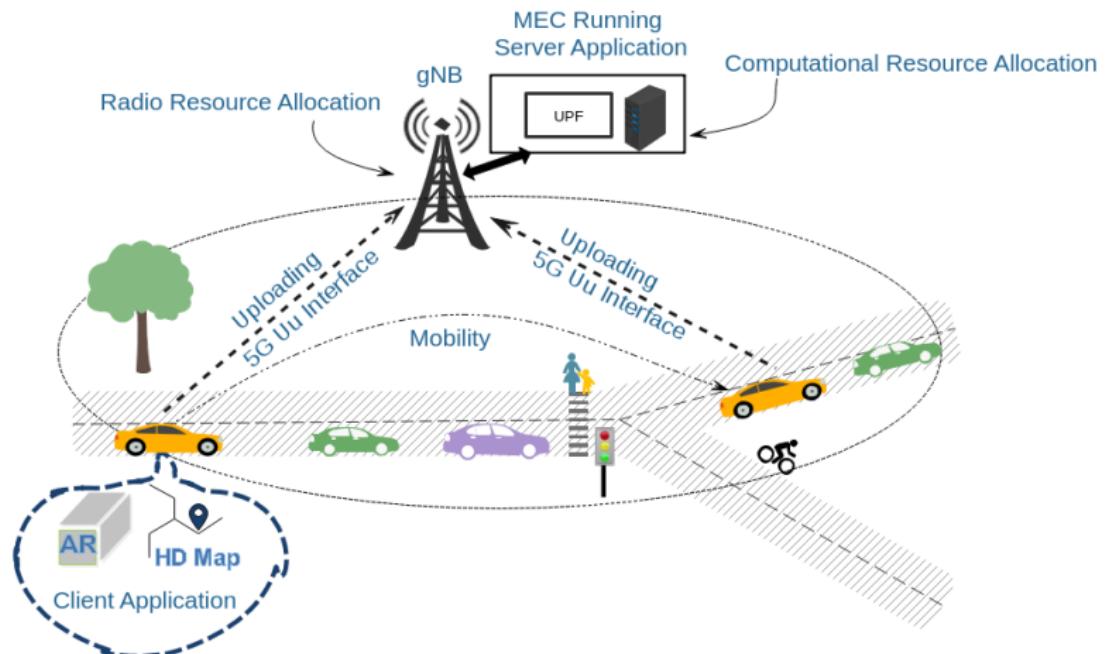


FIGURE 2: System model.

HD Map Task Offloading Application with OCTANE² and RETALIN³

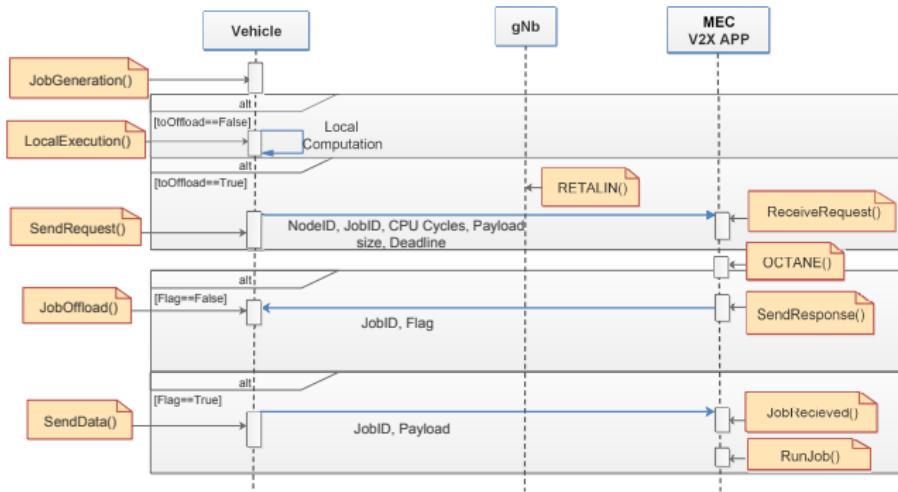


FIGURE 3: Sequence diagram of MapOffloading for HD MAP Use Case.

²

Reference: "V. K. Gautam, C. Tompe, B. R. Tamma and A. F. A, "OCTANE: A Joint Computation Offloading and Resource Allocation Scheme for MEC Assisted 5G NR Vehicular Networks," 2021 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS), Hyderabad, India, 2021, pp. 60-65."

³

Reference: V. K. Gautam and B. R. Tamma, "RETALIN: A Queue Aware Uplink Scheduling Scheme for Reducing Scheduling Signaling Overhead in 5G NR," in IEEE Access, vol. 12, pp. 16632-16651, 2024.

OCTANE: A Joint Computation Offloading and Resource Allocation Scheme for MEC Assisted 5G NR Vehicular Networks²

- We studied the joint job offloading decision, radio resource allocation, and computational resource allocation problem for latency-sensitive vehicular applications.
- We proposed OCTANE, which selects jobs for offloading by jointly considering deadlines, computational and communication delays of the jobs.
- We have used an HD Map application as a use case to study the effectiveness of OCTANE.

²

Reference: "V. K. Gautam, C. Tompe, B. R. Tamma and A. F. A, "OCTANE: A Joint Computation Offloading and Resource Allocation Scheme for MEC Assisted 5G NR Vehicular Networks," 2021 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS), Hyderabad, India, 2021, pp. 60-65."

RETALIN: A Queue Aware Uplink Scheduling Scheme for Reducing Scheduling Signaling Overhead in 5G NR³

- We proposed RETALIN, a two-phase UL grant-based scheme for radio resource allocation in 5G NR.
- RETALIN is capable of subsisting generation of Scheduling Request (SRs) in the network, thereby increasing PDR and reducing E2E delay of the UEs.
- RETALIN is capable of achieving a better trade-off between SR and BSR for higher numerologies with different packet sizes and traffic patterns.

³

Reference: V. K. Gautam and B. R. Tammana, "RETALIN: A Queue Aware Uplink Scheduling Scheme for Reducing Scheduling Signaling Overhead in 5G NR," in IEEE Access, vol. 12, pp. 16632-16651, 2024.

Cross-layer framework and BSR prediction.

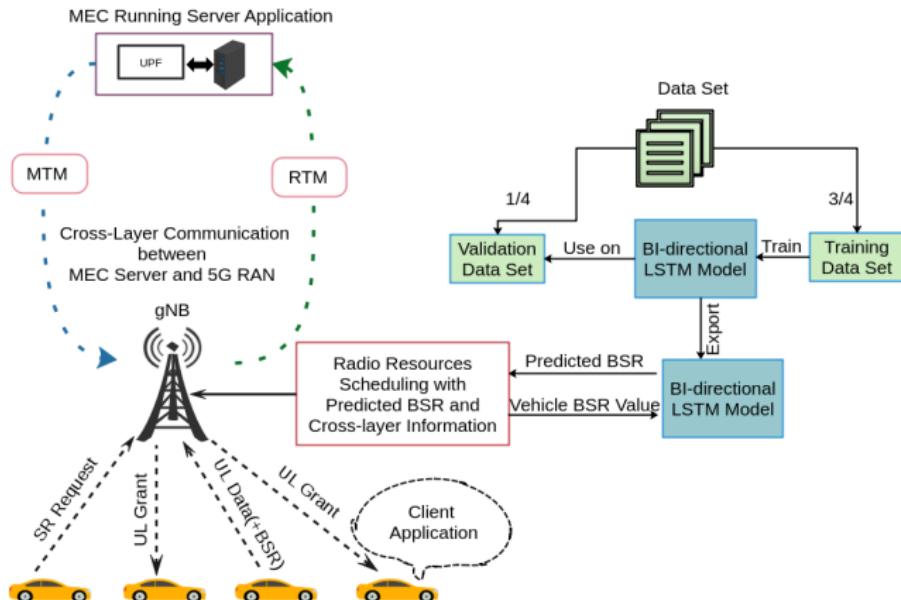


FIGURE 4: Cross-layer framework and BSR prediction.

Grant-based UL procedure with BSR prediction.

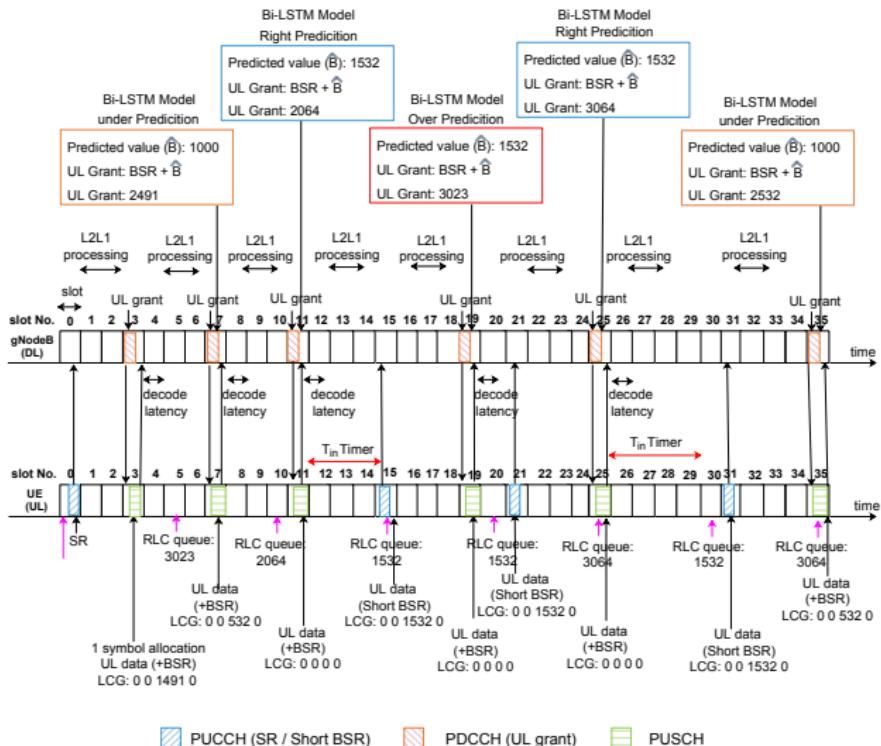


FIGURE 5: Grant-based UL procedure with BSR prediction in case of numerology 1 for packets of size 1500 bytes (with 32 bytes of header) with $IPAT = 5$ slots and $T_{in} = 5$ slots.

Utility Metric

Utility Metric $U_v(t)$

- We modified the utility metric $U_v(t)$ (defined earlier in RETALIN³), which is a PF variant. This modification involves incorporating the ranks of UEs, denoted as R_v , which are sent by the MEC scheduler using MTM messages and utilized for UL scheduling.

$$U_v(t) = \left[\frac{\alpha_v \times P_{v,NSR}(t) \times PF_v(t)}{R_v} \right] \quad (1)$$

- The probability of not generating an SR in a TTI is denoted by $P_{v,NSR}(t)$.
- The PF metric for UE v for a RB r in a TTI is represented as $PF_{v,r}(t)$.
- R_v refers to the ranking of vehicles.
- The normalized backlog ratio of UE v , denoted as (α_v) , indicates the drift in the UL buffer length of UE v as compared to the aggregated UL buffer length of all UEs in a given TTI.

³

Reference: V. K. Gautam and B. R. Tamma, "RETALIN: A Queue Aware Uplink Scheduling Scheme for Reducing Scheduling Signaling Overhead in 5G NR," in IEEE Access, vol. 12, pp. 16632-16651, 2024.

Scheduler running at MEC Server

ALGORITHM 1: Scheduler running at MEC Server

```
inputs      :  $V_{allJobs} = \{J_1, J_2, \dots, J_V\}$ ,  $J_v = \{j_1, j_2, \dots, j_n\}$ ,  $(v \in \mathcal{V})$ ,  $V_{SelectedJobs} = \emptyset$ ,  $R_V = \emptyset$ 
if receive the message RTM then
     $MCS_V \leftarrow \text{extractMCSofVehicles(RTM)}$ 
    calculateRanking( $V_{allJobs}, MCS_V$ )
else
    if new job request is received then
        else
            | calculateRanking( $V_{allJobs}, MCS_V$ )
        end
    GOTO line 1
end
calculateRanking( $V_{allJobs}, MCS_V$ )
 $V_{SelectedJobs} \leftarrow \text{OCTANE}(V_{allJobs}, MCS_V)$ 
 $JobSizeTotal \leftarrow 0$ ,  $JobSize_V = \emptyset$ 
forall  $i \in V_{SelectedJobs}$  do
     $JobSize_v \leftarrow \text{sumOfJobs}(i)$ 
     $JobSizeTotal \leftarrow JobSizeTotal + JobSize_v$ 
     $JobSize_V \leftarrow JobSize_V \cup JobSize_v$ 
end
forall  $v \in \mathcal{V}$  do
     $R_v \leftarrow \left[ \frac{JobSizeTotal - JobSize_v}{JobSizeTotal} \right]$ 
     $R_V \leftarrow R_V \cup R_v$ 
end
Send MTM message with  $R_V$  to the RAN scheduler
```

Scheduler running at gNodeB

ALGORITHM 2: Scheduler running at gNodeB

```
inputs      :  $V_{\text{allBSR}} = \{BSR_1, BSR_2, \dots, BSR_v, \dots, BSR_V\}$ ,  
            $BSR_v = \{bsr_1, bsr_2, \dots, bsr_{Bi-LSTM_w}\}, (v \in \mathcal{V})$   
            $R_V = \{\}, QueueSize_v^{pred} = \{\}, (v \in \mathcal{V})$   
if receive the message MTM then  
   $R_V \leftarrow \text{extractRanksOfVehicles(MTM)}$   
   $MCS_V \leftarrow \text{callRETALIN}(V_{\text{allBSR}})$   
  Send RTM message with  $MCS_V$  to the MEC scheduler  
else  
end  
callRETALIN( $V_{\text{allBSR}}$ )  
callRETALINV $V_{\text{allBSR}}$   
// Predict BSR values using Bi-LSTM model  
forall  $v \in V_{\text{allBSR}}$  do  
   $\hat{B} \leftarrow \text{Bi-LSTMpredict}(BSR_v)$   
   $QueueSize_v^{pred} \leftarrow (bsr_{Bi-LSTM_w} + \hat{B})$   
end  
 $MCS_V \leftarrow \text{RETALIN}(R_V, QueueSize_v^{pred})$   
Return  $MCS_V$ 
```

Objective

- QoS scheduler introduces a delay budget factor (D) that represents the weight sensitive to delay, considering HOL delay and Packet Delay Budget (PDB). The calculation for this factor is given as $D = PDB / (PDB - HOL)$.
- QoS scheduler utilizes multiple factors including the default priority level of the flow, the PF metric and D to allocate the radio resources.

⁴

Reference: K. Koutlia, B. Bojovic, S. Lagen, X. Zhang, P. Wang, and J. Liu, "System analysis of QoS schedulers for XR traffic in 5G NR," *Simulation Modelling Practice and Theory*, vol. 125, p. 102745, 2023.

NS-3 Simulation Parameters

TABLE 1: Simulation Parameters

Parameter	Value
Scenario	Urban Macro Cell
Number of Vehicles $ \mathcal{V} $	30
Mobility Model	Krauss
Average Vehicle Velocity (\mathcal{V}_{vel})	60 kmph
5G NR Base Station/Vehicle TX power	46/23 dBm
5G NR Base Station Antenna Pattern	Canadian dataset
5G NR Base Station Antenna Tilt	15°
5G NR Base Station/Vehicle Antenna Height	25 m / 1.5 m
Carrier Frequency	6 GHz
Channel Model	3GPP, Line-Of-Sight
Channel Bandwidth	30 MHz
5G NR Numerology μ	0, 1, 2
Channel model	UMa_LoS
MEC Task scheduler	OCTANE
5G NR MAC Scheduler	RETALIN, PF, QoS
5G QoS Identifier (5QI)	75, GBR_V2X
$Bi - LSTM_w$	50
Packet size (L)	1000 Bytes
Job generation per vehicle	0.1 sec

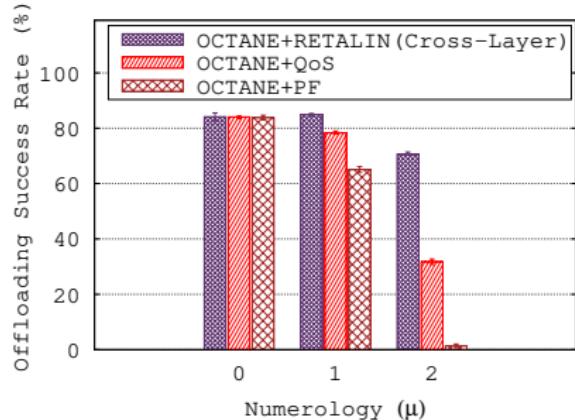
Performance Metrics

Performance Metrics

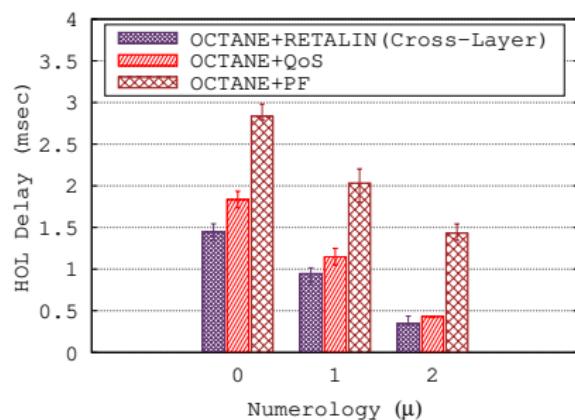
- Offloading Success Rate (OSR) is calculated at MEC server for different schemes in a vehicular scenario. Success is accomplished when job is offloaded to the MEC server and completed within its deadline. If a vehicle decides to run a job locally, it is not counted as failure or success.

$$OSR = \left[\frac{\text{NumberOfJobsDone}}{\text{TotalNumberOfRequestsReceivedByMECServer}} \right] \times 100 \quad (2)$$

- SR_p : It the number of SR request generated over the total number of packets.


$$\text{Percentage of SR} = \left[\frac{\text{Number of SR request}}{\text{Total number of Packets}} \right] \times 100 \quad (3)$$

- BSR_{avg} : BSR_{avg} is the average number of BSR messages used to transmit a packet in a network.


$$\text{Percentage of BSR} = \left[\frac{\text{Number of BSR request}}{\text{Total number of Packets}} \right] \times 100 \quad (4)$$

- Head-Of-Line (HOL) Delay*: It represents the delay experienced by a packet at the head of a queue waiting to be transmitted. HOL delay is a measure of the time a packet spends in a UE queue before it is transmitted.

Performance Results

((a)) OSR.

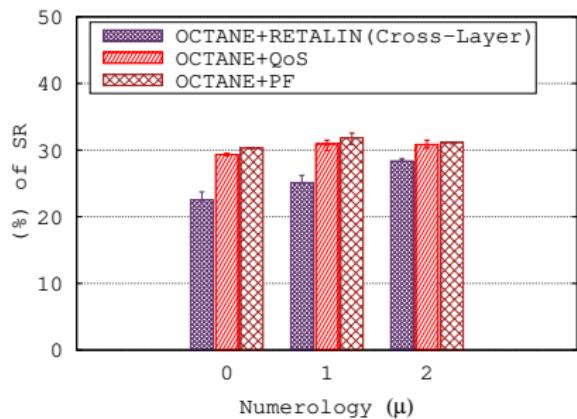
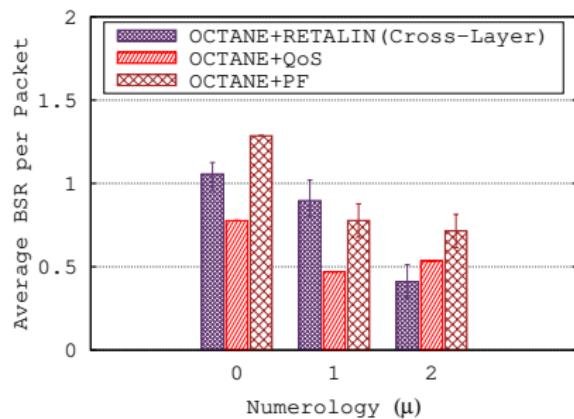

((b)) HOL Delay.

FIGURE 6: Result observed for HD Map application by varying numerology for $V = 30$ with $\mathcal{V}_{speed} = 60 \text{ kmph}$ where $L = 1000$ bytes and $Bi - LSTM_w = 50$.


Observations

- As we increase the Numerology, Offloading Success Rate (OSR) decreases.
- OCTANE+RETALIN (Cross-Layer) is able to achieve 19% higher OSR as compared to OCTANE+QoS.
- OCTANE+RETALIN (Cross-Layer) is able to achieve 25% reduction in Head-Of-Line(HOL) delay as compared to OCTANE+QoS.

Performance Results

((a)) $(\%) \text{ of SR } (SR_p)$.

((b)) BSR_{avg} .

FIGURE 7: Result observed for HD Map application by varying numerology for $V = 30$ with $V_{speed} = 60 \text{ kmph}$ where $L = 1000$ bytes and $Bi - LSTM_w = 50$.

Observations

- SR_p increases for Numerology 2 for OCTANE+QoS. But OCTANE+RETALIN (Cross-Layer) is able to reduce SR_p as compared to OCTANE+QoS.
- BSR_{avg} for OCTANE+RETALIN (Cross-Layer) increases but BSR_{avg} doesn't effect E2E delay.

Conclusions

- Proposed cross-layer framework that facilitated information exchange between RAN and MEC schedulers, leveraging ranking and channel condition data for efficient task offloading in case of V2X applications.
- Bi-directional LSTM, trained on the Berlin V2X dataset, enhanced the model's capability to learn traffic inter-arrival patterns and predict future UL grants, assisting the RAN scheduler.

Thank You!

Email: tbr@cse.iith.ac.in

Visit NeWS Lab @ IIT Hyderabad for more details: <https://newslab.iith.ac.in/>