

A Real-Time Performance Evaluation of Tightly Coupled LTE–Wi-Fi Radio Access Networks

**Thomas Valerian Pasca S, Sumanta Patro, Bheemarjuna Reddy
Tamma, and Antony Franklin A**

Networked Wireless System Laboratory (NeWS LAB)
Department of Computer Science and Engineering
Indian Institute of Technology Hyderabad

भारतीय प्रौद्योगिकी संरक्षण हैदराबाद
Indian Institute of Technology Hyderabad

December 18, 2017

Outline

- 1 Introduction
- 2 Tighter Level Integration Architectures
- 3 LWIP Protocol Implementation
- 4 Performance Evaluation
 - Using UDP
 - Using TCP
- 5 Summary

Need and development of LTE Wi-Fi Aggregation

- Mobile data traffic will grow 7x by 2021 compared to that in 2016 [1].
- Spectrum crunch, high cost of licensed spectrum burdens operator.
- Rel.8 - PMIP based mobility and ANDSF, Rel.9 - eANDSF, Rel.10 - IP Flow mobility, Rel.11 - location based selection of gateway for WLAN and Rel.12 - WLAN network selection, Multiple PDN connections, and IP preservation.

Advantage of LTE Wi-Fi Radio Level Integration Architecture

- EPC need not manage Wi-Fi separately and it is controlled directly by the LTE small cell (SeNB) inside LWA node.
- Radio level integration allows effective radio resource management across Wi-Fi and LTE links.
- LTE acts as the licensed-anchor point for UEs communication with network.

① LTE Wi-Fi integration at IP Layer

- Realizes the integration at IP layer of LTE eNB protocol stack
- An IPSec Tunnel is established between eNB and UE through WLAN termination
- Flow offloading is recommended, packet level steering has challenges

② LTE Wi-Fi integration at PDCP layer

- Traffic Steering is employed at PDCP layer of LTE eNB
- Reorders the packet received at the destination using DC reordering procedure
- Packet level steering is feasible

③ LTE Wi-Fi integration at RLC layer

- Traffic Steering is employed at RLC layer of LTE eNB
- Traffic steering can be done at byte level
- High Reliability and minimized out-of-order delivery

Architecture

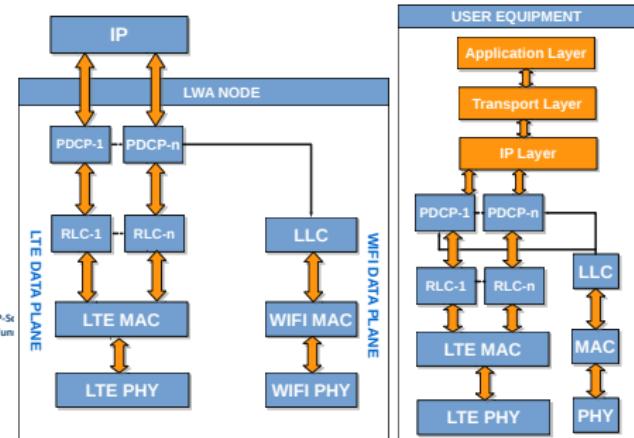
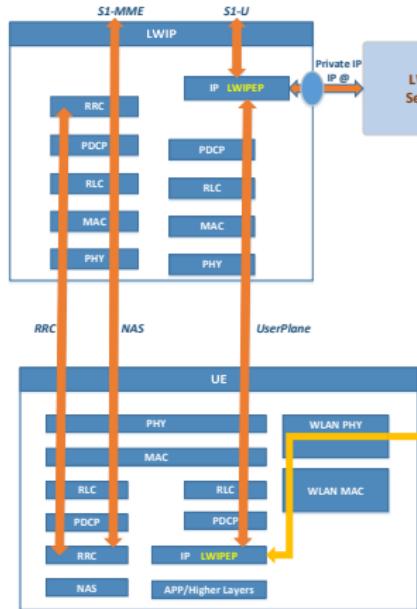



Figure 2 : LTE Wi-Fi Aggregation.

Figure 1 : 3GPP Architecture for non-collocated LWIP.

Protocol Implementation Structure of LWIP Prototype

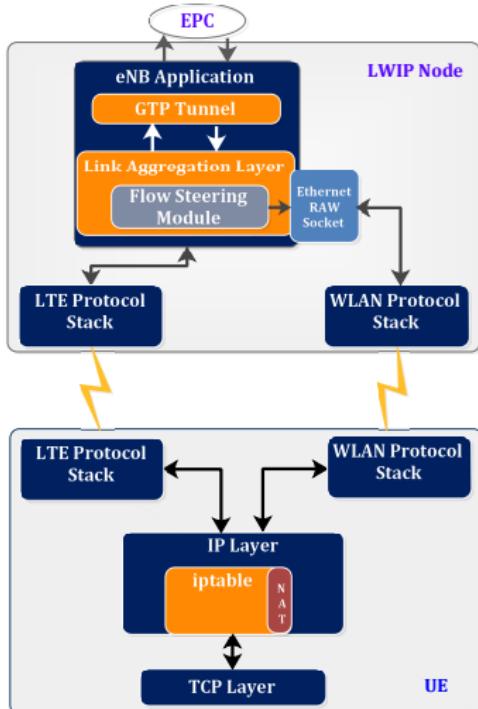


Figure 3 : LWIP Prototype

Procedures

- A socket connection with the destination should be done with LTE interface IP at UE.
- The Wi-Fi interface details of UE has to be informed to LTE SeNB.
- A packet from LTE core network has to be re-routed to Wi-Fi network.
- An unmodified connection between LTE-SeNB and UE through Wi-Fi interface has to be maintained.

Setup Parameters For LWIP

Parameter	Value
LTE - Mode	FDD
LTE - Bandwidth	5 MHz
LTE - Operating Frequency	Band 7 (2600 MHz)
Wi-Fi - Standard	IEEE 802.11 g
Wi-Fi - Bandwidth	20 MHz
Wi-Fi - Operating Frequency	Channel 1 (2412 MHz)

Experiment Configurations

Setup Configuration

Parameter	Value
OAI LTE eNB Hardware Config	ExMIMO2, Intel Xeon 8 core, 12GB DDR, Gigabit Ethernet 1 Gb/s
OAI LTE eNB Software Config	Ubuntu 14.04, Low Latency Kernel 3.19
OAI EPC Hardware Config	Intel Xeon Server 24 core, 64GB DDR, Gigabit Ethernet 10 Gb/s
OAI EPC Software Config	Ubuntu 14.04, Kernel 3.19 generic
Remote Server Hardware Config	Intel Xeon 8 core, 32GB DDR, Gigabit Ethernet 1 Gb/s
Remote Server Software Config	Ubuntu 14.04, Kernel 3.2 Apache 2 Webserver, TCP - High Speed
User Equipment	Nexus 5 - hammerhead, Android 4.4.4 (KitKat)

Outline

1 Introduction

2 Tighter Level Integration Architectures

3 LWIP Protocol Implementation

4 Performance Evaluation

- Using UDP
- Using TCP

5 Summary

Experiment Setup [2]

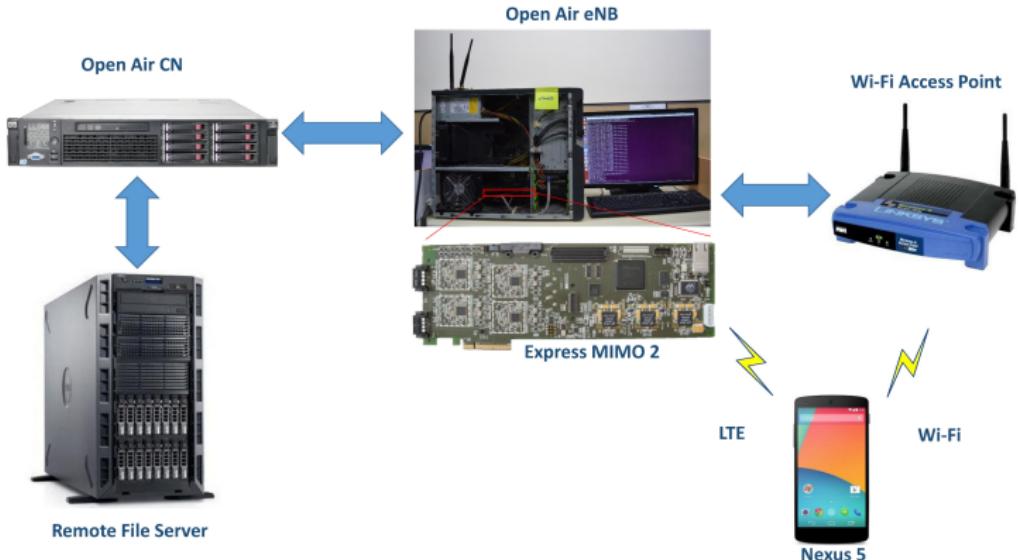


Figure 4 : Experiment Setup

iPerf - UDP Test

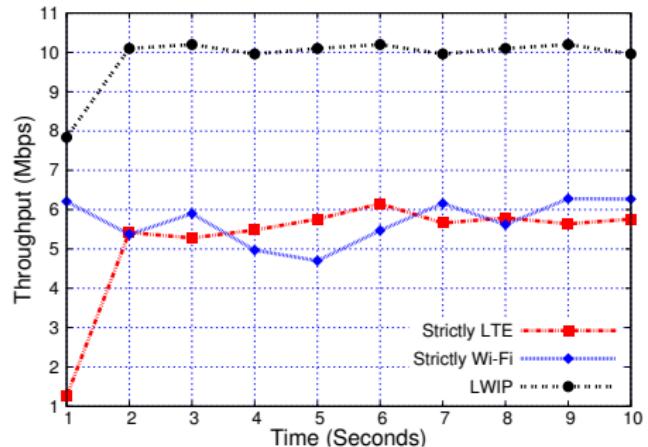


Figure 5 : Throughput in iPerf test using UDP (in downlink - 802.11 b)

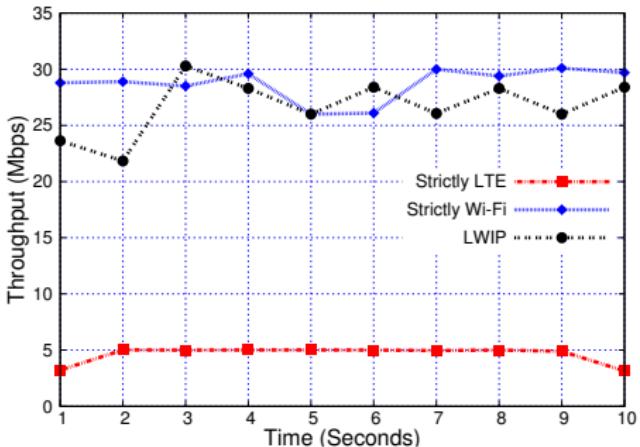


Figure 6 : Throughput in iPerf test using UDP (in downlink - 802.11 g)

Outline

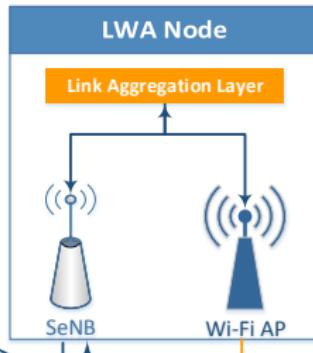
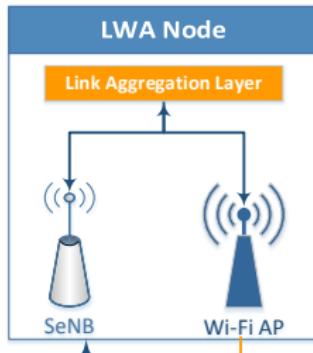
1 Introduction

2 Tighter Level Integration Architectures

3 LWIP Protocol Implementation

4 Performance Evaluation

- Using UDP
- Using TCP



5 Summary

Link Aggregation Strategies (LAS)

Types

- **LTE NoLAS:** Two flows are simultaneously downloaded through LTE.
- **Wi-Fi NoLAS:** Two flows are simultaneously downloaded through Wi-Fi.
- **FS-LAS:** Flow split enables one flow to be downloaded through LTE and other through Wi-Fi.
- **WoD-LAS:** WiFi only in Downlink enables both the flows to use Wi-Fi for downlink and the corresponding TCP ACKs are sent through LTE in uplink.

Link Aggregation Strategies

TCP File Download - User Throughput

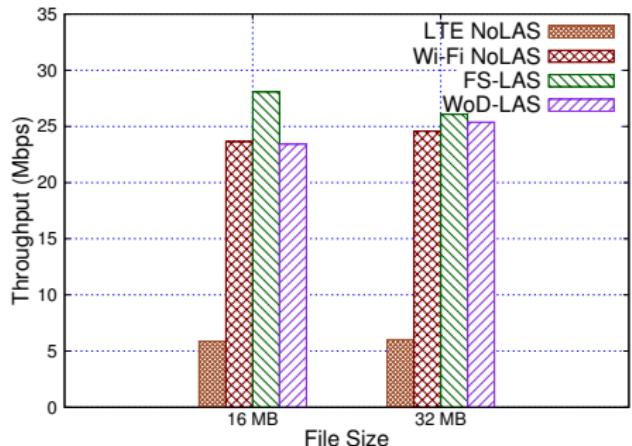


Figure 7 : Throughput with Low Contention

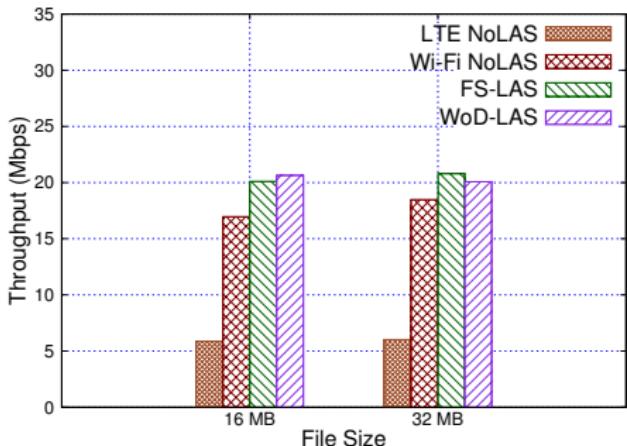


Figure 8 : Throughput with High Contention

TCP File Download - Wi-Fi Throughput

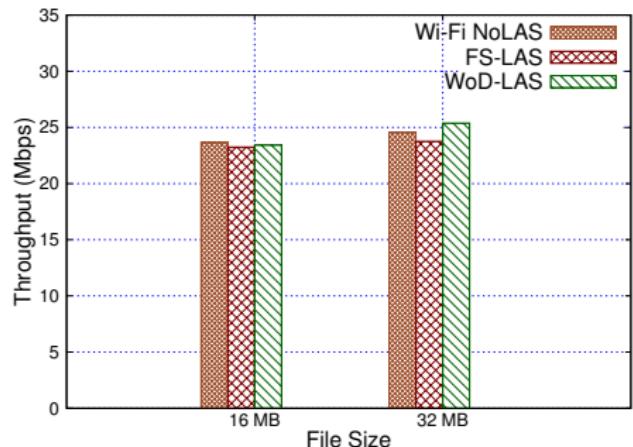


Figure 9 : Throughput of Wi-Fi with Low Contention

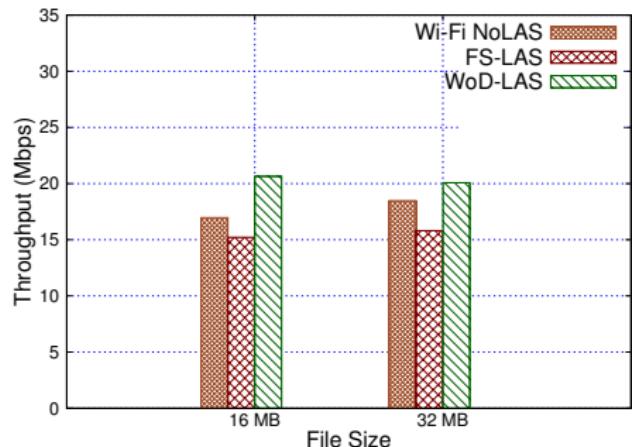


Figure 10 : Throughput of Wi-Fi with High Contention

TCP File Download Time

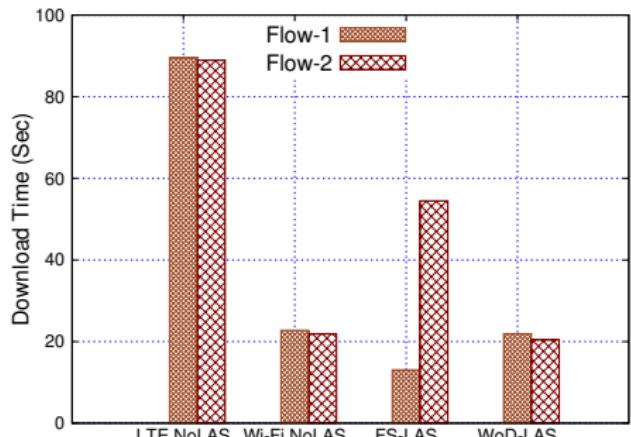


Figure 11 : Time to download a 32 MB file with low contention.

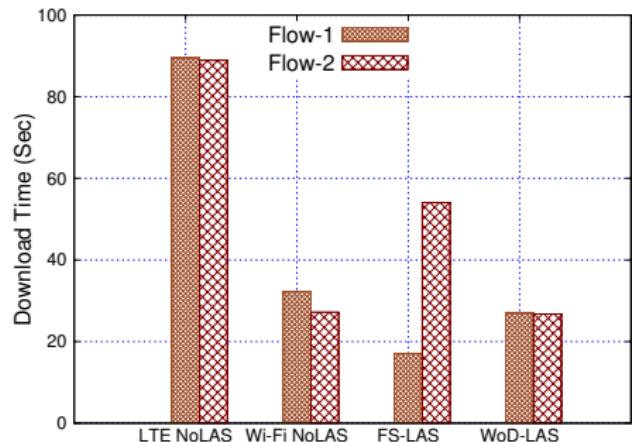


Figure 12 : Time to download a 32 MB file with high contention.

Conclusions and Future Work

- ① Performance of LWIP is studied using OAI LTE, Cisco AP, and commercial UE.
- ② The developed prototype does not require any modifications to the protocol stack of the UE.
- ③ Different link aggregation strategies exhibits varied performance in LWIP prototype.
- ④ WoD-LAS has improved sum of flow throughputs by 28% as compared to FS-LAS, when the contention in Wi-Fi channel is high.
- ⑤ Efficient packet level steering solutions across LTE and Wi-Fi links in real time is required to improve TCP performance.

- Cisco, Visual Network Index, *White paper: Cisco VNI Forecast and Methodology, 2016-2021.*
- Thomas Valerian Pasca, Sumanta Patro, Bheemarjuna Reddy Tamma, and Antony Franklin. *Tight coupling of LTE WiFi Radio Access Networks, A Testbed Evaluation,* http://www.openairinterface.org/?page_id=1885, 2016.
- OAI : OpenAirInterface, "EURECOM", <http://www.openairinterface.org/>.
- HostAPD : For Linux Wireless AP, <http://w1.fi/hostapd/>.
- 3GPP TS 36300 : *E-UTRAN; Overall description, Stage 2.*
- iPerf : Bandwidth Measurement Tool. <https://iperf.fr/>.

References II

- HIPRIKEEPER,
[https://github.com/MPTCP-smartphone-thesis/
MultipathControl/tree/master/HIPRIKeeper](https://github.com/MPTCP-smartphone-thesis/MultipathControl/tree/master/HIPRIKeeper).
- G. Bianchi, Performance analysis of the ieee 802.11 distributed coordination function, Selected Areas in Communications, IEEE Journal on, vol. 18, no. 3, pp. 535547, 2000.
- NS-3 Simulator.<https://www.nsnam.org/>
- 3GPP. Study on Small Cell enhancements for E-UTRA and E-UTRAN, 2015. <http://www.3gpp.org/ftp/Specs/archive/36series/36.842/36842-c00.zip>
- J. Ling, S. Kanugovi, S. Vasudevan, and A. Pramod, Enhanced capacity and coverage by wi-fi lte integration, IEEE Communications Magazine, vol. 53, no. 3, pp. 165171, March 2015.

- N. Networks. Support for LTE-WLAN Aggregation and Interworking Enhancement, 2015. [Online]. Available: http://www.3gpp.org/ftp/Meetings/3GPP_SYNC/RAN3/Inbox
- X. Lagrange, Very tight coupling between LTE and Wi-Fi for advanced offloading procedures, in Wireless Communications and Networking Conference Workshops (WCNCW), 2014.
- QualComm. Motivation for LTE-WiFi Aggregation, March 2015. <http://www.3gpp.org/DynaReport/TDocExMtg--RP-67--31196.htm>
- LTE/WLAN Radio Level Integration Using IPsec Tunnel (LWIP) encapsulation; Protocol specification.
<http://www.3gpp.org/DynaReport/36361.htm>

Queries

For Further Queries Contact US

cs13p1002@iith.ac.in

www.thomasvalerrianpasca.in

GitHub

<https://github.com/ThomasValerrianPasca/>