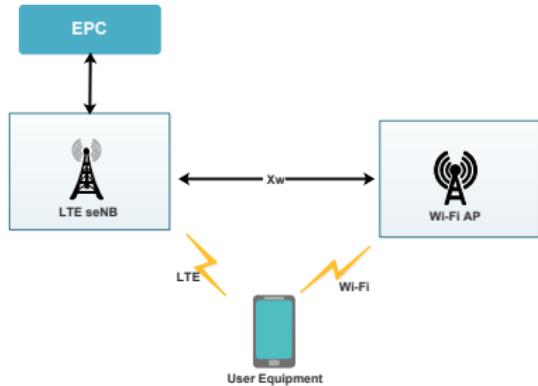


# A Packet Level Steering Solution for Tightly Coupled LWIP Networks


Thomas Valerian Pasca, Sumanta Patro,  
Bheemarjuna Reddy Tamma, and Antony Franklin.

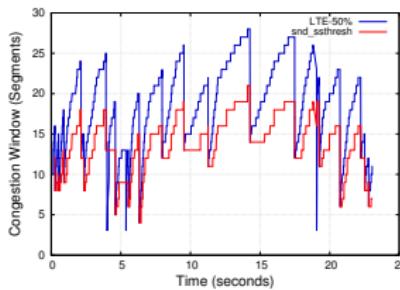
Department of Computer Science and Engineering  
Indian Institute of Technology - Hyderabad



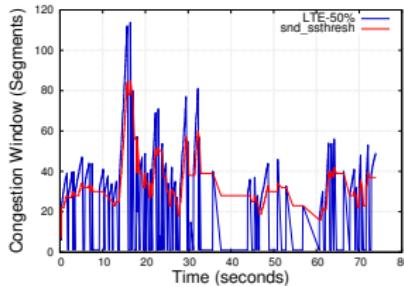
मार्तीय प्रौद्योगिकी संस्थान हैदराबाद  
Indian Institute of Technology Hyderabad

## Radio Level Interworking Architecture - LWIP

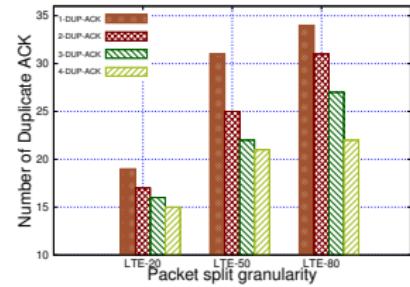



**Figure: 3GPP LWIP Architecture**

- Existence of Wi-Fi AP is not known to EPC, *i.e.*, Wi-Fi AP is controlled directly by the LTE small cell (SeNB).
- Enables effective radio resource management across Wi-Fi and LTE links.
- LTE acts as the licensed-anchor point for UE's communication with the network.


## Challenges with LWIP

- Tighter LTE and Wi-Fi interworking architectures can harvest maximum benefit of link aggregation with packet level steering
- Packet level steering may lead to Out-of-Order (OOO) delivery of packets at the receiver due to link heterogeneity
- TCP receiver generates DUPlicate ACKnowledgements (DUP-ACK) for OOO packets received
- The unnecessary DUP-ACKs adversely affect the TCP congestion window growth and then lead to poor TCP performance
- Efficient packet level steering and avoiding OOO delivery are necessary to reap in full benefits of LWIP


# Out of Order Delivery Problem



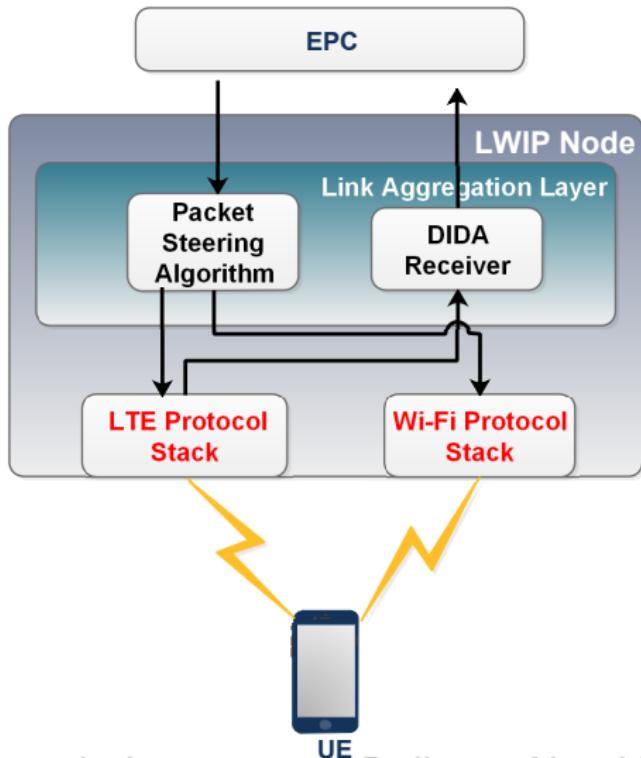
**Figure:** CW for split ratio of 50% across LTE and Wi-Fi with 100 msec RTT for a 16MB file download.



**Figure:** CW for split ratio of 50% across LTE and Wi-Fi with 20 msec RTT for a 32MB file download.

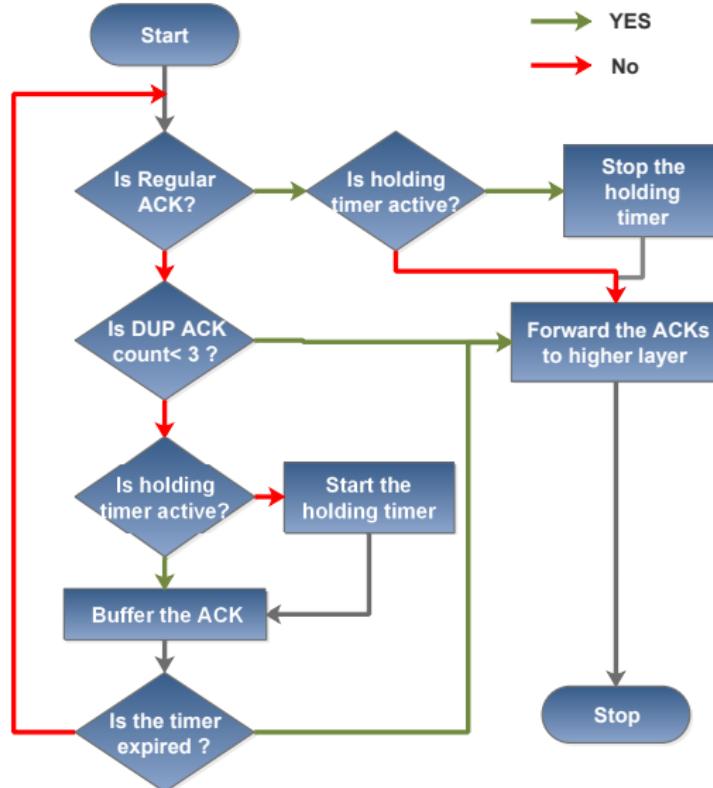


**Figure:** Out Of Order packet delivery for packet split ratio of 20%, 50%, and 80% for 100 msec RTT.


## Literature Review

- ① Delayed ACK [4] introduces a waiting time before the receiver generates a DUP-ACK
- ② Delay in ACK generation provides opportunity for the receiver to minimize the necessity for generating DUP-ACK
- ③ Delaying ACK in slow start phase will negatively affect TCP growth
- ④ MPTCP [7] enables multiple TCP sub-flow to be sent over different interfaces. But it is inefficient to make quick decisions to steer the packets across different subflows.
- ⑤ MPTCP takes steering decision at the sender so it cannot react for the fluctuations on the wireless channel quickly.
- ⑥ In LWIP, the packet level steering introduces OOO packet delivery at the last hop, which is not addressed earlier.

## Objectives


- ① Does not affect the growth of TCP congestion window
- ② Reduces the triple DUP-ACK delivery to TCP sender
- ③ Combination of packet steering technique and reordering technique to achieve higher throughputs
- ④ No change to the TCP semantics
- ⑤ No split in TCP session, i.e., a single congestion window at the TCP sender

## Components of the Proposed Solution - DIDA



DIDA: Dynamic pseudo-In-sequence Delivery Algorithm

# Working Procedure of DIDA



## Optimal Holding time

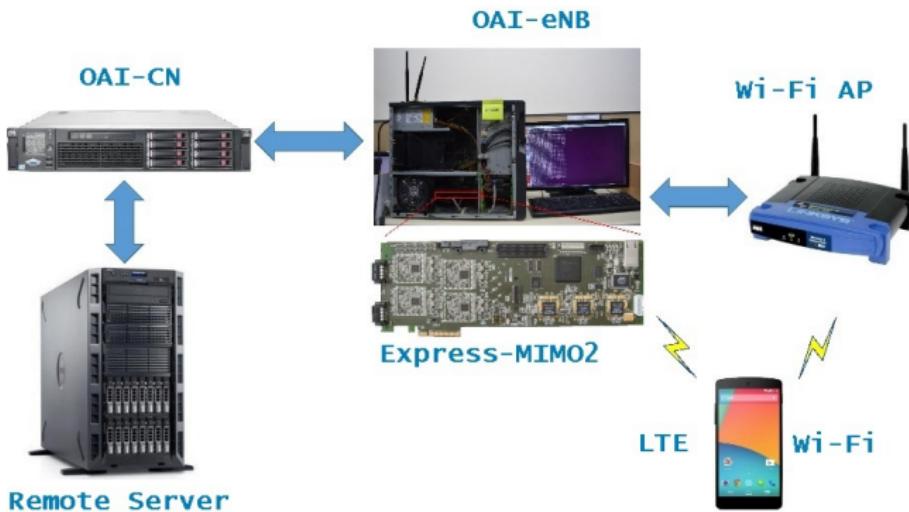
Optimal holding time can be given as  $t_{opt}$

$$t_{opt} = \frac{1}{2Ae^{-1}} \left( (2Ae^{-1} \times RTT + B(1 - e^{-1})) + \right.$$

$$\left. \sqrt{(2Ae^{-1} \times RTT + B(1 - e^{-1}))^2 + 4Ae^{-1}(e^{-1} \times B \times RTT - Ae^{-1}RTT^2)} \right)$$

where

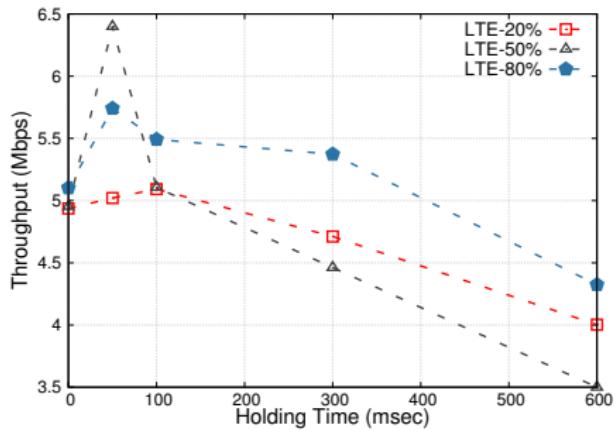
$$A = \delta_{buff} \times w \times (1 - \beta(w))$$


$$B = \delta_{buff} \times \alpha(w) \times T_E$$

operating range can be defined as

$$LB = t_{opt} - \frac{R}{S_1 \times \theta}$$

$$UB = t_{opt} + \frac{R}{S_2 \times \theta}$$

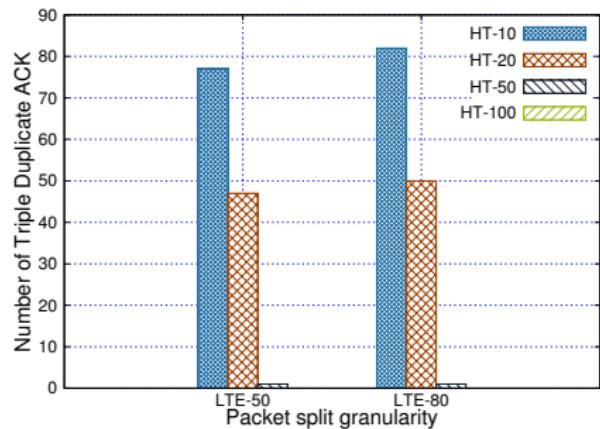

# Realization of LWIP Testbed



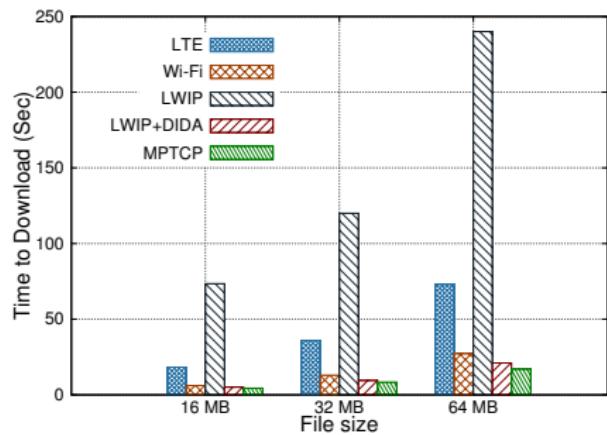

# Testbed Configurations

| Parameter                        | Value                                                                      |
|----------------------------------|----------------------------------------------------------------------------|
| OAI LTE eNB<br>Hardware Config   | ExMIMO2/USRP-B210, Intel Xeon 8 core,<br>12GB DDR, Gigabit Ethernet 1 Gbps |
| OAI LTE eNB<br>Software Config   | Ubuntu 14.04, Low Latency Kernel 3.19<br>Ubuntu 14.04, Kernel 3.4.60-mptcp |
| OAI EPC<br>Hardware Config       | Intel Xeon Server 24 core, 64GB DDR,<br>Gigabit Ethernet 10 Gbps           |
| OAI EPC<br>Software Config       | Ubuntu 14.04, Kernel 3.19 generic                                          |
| Remote Server<br>Hardware Config | Intel Xeon 8 core, 32GB DDR,<br>Gigabit Ethernet 1 Gbps                    |
| Remote Server<br>Software Config | Ubuntu 14.04, Kernel 3.2<br>Apache 2 Web server                            |
| User Equipment                   | Nexus 5 - hammerhead, Android 4.4.4 (kitkat)                               |
| LTE eNB bandwidth                | 5 MHz                                                                      |
| Number of resource blocks        | 25                                                                         |
| Wi-Fi transmit power             | 20 dbm                                                                     |
| LTE MAC scheduler                | Round Robin                                                                |
| Wi-Fi frequency, bandwidth       | 2.4 GHz, 20 MHz                                                            |
| Wi-Fi standard                   | IEEE 802.11 g, n                                                           |

# Throughput observed for different packet split ratios with DIDA




**Figure:** Throughput for RTT 100 ms.




**Figure:** Throughput for RTT 20 ms.

# Performance Study of DIDA Algorithm



**Figure:** Triple DUP-ACKs observed for different packet split ratios.



**Figure:** Download time observed for LWIP, LWIP with DIDA, and MPTCP.

## Performance comparison with MPTCP

- 1 Various congestion control algorithms of MPTCP viz., Coupled, Uncoupled and Link Increase Algorithm (LIA) are considered.
- 2 When LTE and Wi-Fi link rates are incomparable, then MPTCP suffers from "the speed of the slowest link" problem and hence fails to achieve the aggregated throughput.
- 3 LWIP+DIDA has improved the throughput due to its efficient holding mechanism
- 4 When IEEE 802.11g is used (here LTE and Wi-Fi link rates are comparable), then MPTCP gets the full aggregation benefit
- 5 LWIP+DIDA achieves comparable performance with MPTCP. It has improved the system throughput by 2X compared to native LWIP.

## Conclusions

- Proposed DIDA efficiently reduces the OOO packet delivery problem in the context of TCP.
- DIDA did not allow any change to the TCP semantic and hence can be adopted widely.
- Operating DIDA with optimal holding time saves 20% of DUP-ACKs on average, which might have caused TCP congestion window to drop.
- DIDA doubles the throughput achieved as compared to native LWIP.

## Acknowledgements

**This work was supported by the project "Low Latency Network Architecture and Protocols for 5G Systems and IoT"**



## References I

- [1] Cisco. (2017) A White Paper on Global Mobile Data Traffic Forecast Update. [Online]. Available: <https://goo.gl/zY4nKI>
- [2] 3GPP, "LTE-WLAN Aggregation and RAN Controlled LTE-WLAN Interworking," Tech. Rep. 36.300, 2016.
- [3] F. Wang et al., "Improving TCP performance over mobile ad-hoc networks with OOO detection and response," in Proc. of ACM MobiHoc, 2002, pp. 217-225.
- [4] V. Paxson, "End-to-end internet packet dynamics," in ACM SIGCOMM CCR, vol. 27, no. 4, 1997, pp. 139-152.
- [5] M. Zhang et al., "RR-TCP: a reordering-robust TCP with DSACK," in Proc. of ICNP. IEEE, Nov 2003, pp. 95-106.
- [6] S. Bohacek et al., "A New TCP for Persistent Packet Reordering," IEEE/ACM Trans. on Net., vol. 14, no. 2, pp. 369-382, April 2006.
- [7] C. Paasch and O. Bonaventure, "Multipath tcp," Communications of

## References II

the ACM, vol. 57, no. 4, pp. 51-57, 2014.

[8] D. Ibarra et al., "Software-Based Implementation of LTE/Wi-Fi Aggregation and Its Impact on Higher Layer Protocols," in Proc. of ICC. IEEE, May 2018, pp. 1-6.

[9] T. Santhappan et al., "Visible: Virtual congestion control with boost acks for packet level steering in lwip networks," in Proc. of IEEE GLOBECOM, Dec 2017, pp. 1-7.

[10] D. Leith and R. Shorten, "H-TCP: TCP for high-speed and long-distance networks," in Proc. of PFLDnet, 2004.

[11] T. Kelly, "Scalable TCP: Improving Performance in Highspeed Wide Area Networks," ACM SIGCOMM CCR, vol. 33, no. 2, pp. 83-91, 2003.

[12] L. Xu et al., "Binary Increase Congestion Control for Fast Long-Distance Networks," in Proc. of IEEE INFOCOM, 2004, pp. 2514-2524.

## References III

- [13] V. Paxson et al., "Computing TCP's Retransmission Timer," IETF, Tech. Rep. RFC 6298, 2011.
- [14] V. Jacobson, "Congestion avoidance and control," in ACM SIGCOMM CCR, vol. 18, no. 4, 1988, pp. 314-329.
- [15] S. Floyd, "Highspeed tcp for large congestion windows," IETF, Tech. Rep. RFC 3649, 2003.
- [16] N. Nikaein et al., "OpenAirInterface: A flexible platform for 5G research," ACM SIGCOMM CCR, vol. 44, no. 5, pp. 33-38, 2014.
- [17] M. Baerts. (2015) HIPRIKeeper. [Online]. Available: <https://github.com/MPTCP-smartphone-thesis/MultipathControl>
- [18] S. Thomas et al. (2017) LTE Wi-Fi Integration With IPsec Tunnel. [Online]. Available: <https://github.com/ThomasValerrianPasca/>

